
CS 473: Fundamental Algorithms, Spring 2011

HW 8

Question 1 is due by Sunday, 23:59:59, April 3

Questions 2-4 are due by Monday, 23:59:59, April 4

This homework contains four problems. Read the instructions for submitting homework on
the course webpage.

Collaboration Policy: For this homework, Problems 2–4 can be worked in groups of up to three
students.

Problem 1 should be answered in Compass as part of the assessment HW8-Online and
should be done individually.

1. HW8-Online. (10 pts.)

2. Coins and stuff. (30 pts.)

(A) (5 pts.) You are given a fair coin that returns heads with probability 1/2. Prove that
there is no algorithm that can perform a constant number of coin flip operations, and
output 1 with probability 1/3 and 0 with probability 2/3.

(B) (5 pts.) Describe an algorithm that using a fair coin outputs 1 with probability 1/3 and
0 with probability 2/3. The expected number of coin flips of your algorithm uses should
be O(1).

(C) (10 pts.) Describe a simple algorithm that given n picks uniformly in random a number
between 1 and n (where all the numbers have the same probability to be picked). The
algorithm can use only fair coin flips. How many coin flips does your algorithm uses in
expectation? How many coin flips does your algorithm uses in the worst case?

(D) (10 pts.) Describe an algorithm that given n outputs a random permutation of {1, . . . , n}.
How many coin flips does your algorithm uses in expectation? Argue why asymptotically
(up to a constant) there is no algorithm that uses fewer coin flips (in expectation) that
can perform this task.

3. The good, the bad, and the middle. (30 pts.)

Suppose you’re looking at a flow network G with source s and sink t, and you want to be
able to express something like the following intuitive notion: Some nodes are clearly on the
“source side” of the main bottlenecks; some nodes are clearly on the “sink side” of the main
bottlenecks; and some nodes are in the middle. However, G can have many minimum cuts,
so we have to be careful in how we try making this idea precise.

Here’s one way to divide the nodes of G into three categories of this sort.

1

• We say a node v is upstream if, for all minimum s-t cuts (A,B), we have v ∈ A – that
is, v lies on the source side of every minimum cut.
• We say a node v is downstream if, for all minimum s-t cuts (A,B), we have v ∈ B –

that is, v lies on the sink side of every minimum cut.
• We say a node v is central if it is neither upstream nor downstream; there is at least

one minimum s-t cut (A,B) for which v ∈ A, and at least one minimum s-t cut (A′, B′)
for which v ∈ B′.

Give an algorithm that takes a flow network G and classifies each of its nodes as being
upstream, downstream, or central. (Hint: The running time of your algorithm should be
within a constant factor of the time required to compute a single maximum flow.)

4. Maximum Flow By Doubling. (30 pts.)

Let G = (V,E) be a flow network with source s, sink t, and an integer capacity c(u, v) on
each edge (u, v) ∈ E. Let C = max(u,v)∈E c(u, v).

(A) (4 pts.) Argue that a minimum cut of G has capacity at most C|E|.
(B) (6 pts.) For a given number K, show that an augmenting path of capacity at least K

can be found in O(|E|) time, if such a path exists.
The following modification of the Ford-Fulkerson can be used to compute a maximum
flow in G.

algMaxFlowDoubling(G, s, t)
C ← max(u,v)∈Ec(u, v)

initialize flow f to 0

K ← 2blgCc

while K ≥ 1 do (*)

while (∃ augmenting path p of capacity at least K) do

augment flow f along p

K ← K/2
return f

(C) (4 pts.) Argue that algMaxFlowDoubling returns a maximum flow.
(D) (6 pts.) Show that the capacity of a minimum cut of the residual graph Gf is at most

2K|E| each time line (*) is executed.
(E) (5 pts.) Argue that the inner while loop is executed O(|E|) times for each value of K.
(F) (5 pts.) Conclude that algMaxFlowDoubling can be implemented so that it runs in

O
(
|E|2 lgC

)
time.

2

