This homework contains four problems. **Read the instructions for submitting homework on the course webpage.**

Collaboration Policy: For this homework, Problems 2–4 can be worked in groups of up to three students.

Problem 1 should be answered in Compass as part of the assessment HW6-Online and should be done individually.

1. **HW6-Online.** (20 pts.)

2. **MST Stuff.** (30 pts.)
 You are given an undirected weighted graph $G = (V, E)$ with n vertices and m edges. Assume the weights of the edges are all distinct.

 (A) (10 pts.) Let $E' \subseteq E$ be the set of those edges of G with weight less than or equal to the median of edge weights. Give an $O(n + m)$ time algorithm to determine whether the MST of G uses only edges in E' or not.

 (B) (20 pts.) Give an $O(n + m)$ time algorithm that outputs the heaviest edge in the (unique) MST of G.

3. **Palindrome II.** (30 pts.)
 A sequence is **palindromic** if it is the same whether read left to right or right to left. An example is $m, a, l, a, y, a, l, a, m$ (**Malyalam** is a Southern Indian language). Given a sequence a_1, a_2, \ldots, a_n describe an algorithm to compute a **shortest** palindromic **supersequence** of the given sequence. For example, the sequence below

 ![blab](image)

 has the palindrome `blab` as the shortest supersequence.

 What is the running time of your algorithm?

4. **Serving time.** (20 pts.)
 A server has n customers waiting to be served. The service time required by each customer is known in advance: it is t_i minutes for customer i. So if, for example, the customers are served in order of increasing i, then the ith customer has to wait $\sum_{j=1}^{i} t_j$ minutes. We wish to minimize the total waiting time

 $$T = \sum_{i=1}^{n} (\text{time spent waiting by customer } i).$$
Give an efficient algorithm for computing the optimal order in which to process the customers. How fast is your algorithm?