CS 473: Algorithms, Spring 2011 HW 0 (due Monday, 23:59:59, January 24)

This homework contains two problems; problem 0 is composed of a number of small problems on campus. Read the instructions for submitting homework on the course webpage.

Note, that you have to submit your solution online (no paper submission).
Collaboration Policy: For this homework, each student should work independently and write up their own solutions and submit them.

Read the course policies before starting the homework.

0 . (60pts) HW0 online on compass.

1. (40pts) A somewhat non-standard version of Euclid's algorithm for finding the greatest common divisor (gcd) of two non-negative integer numbers x and y is the following.
```
WeirdEuclid \((x, y)\) :
    if \(y=0\) then
        return \(x\)
    if \(x=0\) then
        return \(y\)
    if \(x\) is even and \(y\) is even then
            return \(2 *\) WeirdEuclid \((x / 2, y / 2)\)
    if \(x\) is even and \(y\) is odd then
            return WeirdEuclid \((x / 2, y)\)
    if \(x\) is odd and \(y\) is even then
        return WeirdEuclid \((x, y / 2)\)
    if \(y>x\) then
        return WeirdEuclid \((y-x, x)\)
    else
        return WeirdEuclid \((x-y, y)\)
```

Prove via induction that the algorithm correctly computes the gcd of x and y. Also prove that the running time of the algorithm is polynomial in the input size. Note that the input size is $\Theta(\log x+\log y)$. Assume that basic arithmetic operations take constant time.
Hint: Think about the binary representation of x and y.

