CS 473: Fundamental Algorithms, Spring 2011

Discussion 11
April 12, 2011

1. k-REGULAR BIPARTITE GRAPHS.

A k-Regular graph is an undirected graph where every vertex has degree k. We will
prove that if a bipartite graph is k-Regular, then it has a perfect matching. First,
recall the following definitions:

e Bipartite Graph: a graph whose vertices are partitioned into two independent
sets, L and R.

e Matching: A matching in a graph G is a set of edges such that no two edges
share a common vertex.

e Neighbors: Let v be a vertex. The neighbors of v, denoted by N(v) are the set
of vertices connected to v.

e Hall’s theorem: Let G = (LUR, E) be a bipartite graph where |L| = |R|. Then
G has a perfect matching if and only if for every subset X C L, |[N(X)| > |X]|.

For the following problems, let G = (L U R, E) be a k-regular bipartite graph where
L] = |R].

(A) Show that G has a perfect matching via Hall’s theorem.

(B) Now, construct a flow network G’ from G such that the value of the maximum
flow in G’ is equal to the size of the perfect matching in G.
(Note, that one can argue here that there is a fractional flow of value |L| and thus
implying (A) in this case.)

2. DINNER SCHEDULING.

Consider a group of n people who are trying to figure out a dinner schedule over the
next n nights where each person needs to cook exactly once. Everyone has scheduling
conflicts with some of the nights, so deciding who should cook on which night becomes
tricky:.

Label the people {p1,...,p,} and the nights {dy,...,d,}. For each person p;, there’s
a set of nights S; C {dy,...,d,} when they are not able to cook.

A feasible dinner schedule is an assignment of each person to a different night, so that
each person cooks on exactly one night, there is someone cooking on each night, and
if p; cooks on night d;, then d; ¢ S;.

(A) Describe a bipartite graph G so that G has a perfect matching if and only if there
is a feasible dinner schedule for the group. What is the running time of your
algorithm in this case?

(B) After generating a schedule, they realize there is a problem. n — 2 of the people
are assigned to different nights on which they are available: no problem there.
However, for the other two people p; and p;, and the other two days, dj and d,
both p; and p; are assigned to cook on night d;. Show that it’s possible to fix this
bad assigned and get a good assigned faster than just computing a solution from
scratch. Namely, decide in O(n?) time, given this bad solution, whether there
exists a feasible dinner schedule. How does the running time of your algorithm
compares to (A).

