
CS 473: Fundamental Algorithms, Spring 2011

Discussion 11

April 12, 2011

1. k-Regular Bipartite Graphs.

A k-Regular graph is an undirected graph where every vertex has degree k. We will
prove that if a bipartite graph is k-Regular, then it has a perfect matching. First,
recall the following definitions:

• Bipartite Graph : a graph whose vertices are partitioned into two independent
sets, L and R.
• Matching : A matching in a graph G is a set of edges such that no two edges

share a common vertex.
• Neighbors : Let v be a vertex. The neighbors of v, denoted by N(v) are the set

of vertices connected to v.
• Hall’s theorem : Let G = (L∪R,E) be a bipartite graph where |L| = |R|. Then
G has a perfect matching if and only if for every subset X ⊆ L, |N(X)| ≥ |X|.

For the following problems, let G = (L ∪ R,E) be a k-regular bipartite graph where
|L| = |R|.

(A) Show that G has a perfect matching via Hall’s theorem.

(B) Now, construct a flow network G′ from G such that the value of the maximum
flow in G′ is equal to the size of the perfect matching in G.

(Note, that one can argue here that there is a fractional flow of value |L| and thus
implying (A) in this case.)

2. Dinner Scheduling.

Consider a group of n people who are trying to figure out a dinner schedule over the
next n nights where each person needs to cook exactly once. Everyone has scheduling
conflicts with some of the nights, so deciding who should cook on which night becomes
tricky.

Label the people {p1, . . . , pn} and the nights {d1, . . . , dn}. For each person pi, there’s
a set of nights Si ⊂ {d1, . . . , dn} when they are not able to cook.

A feasible dinner schedule is an assignment of each person to a different night, so that
each person cooks on exactly one night, there is someone cooking on each night, and
if pi cooks on night dj, then dj /∈ Si.

(A) Describe a bipartite graph G so that G has a perfect matching if and only if there
is a feasible dinner schedule for the group. What is the running time of your
algorithm in this case?

1

(B) After generating a schedule, they realize there is a problem. n − 2 of the people
are assigned to different nights on which they are available: no problem there.
However, for the other two people pi and pj, and the other two days, dk and dl,
both pi and pj are assigned to cook on night dl. Show that it’s possible to fix this
bad assigned and get a good assigned faster than just computing a solution from
scratch. Namely, decide in O(n2) time, given this bad solution, whether there
exists a feasible dinner schedule. How does the running time of your algorithm
compares to (A).

2

