DFS in Directed Graphs, Strong Connected Components, DAGs

Lecture 2
January 20, 2011
Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture: saw an \(O(n \cdot (n + m)) \) time algorithm. This lecture: \(O(n + m) \) time algorithm.
Graph of SCCs

Let S_1, S_2, \ldots, S_k be the SCCs of G. The graph of SCCs is G^{SCC}.

- Vertices are S_1, S_2, \ldots, S_k.
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

Figure: Graph of SCCs G^{SCC}
Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC}.

Proof.

Exercise.
Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.
If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ is an SCC in G. Formal details: exercise.
Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ is an SCC in G. Formal details: exercise.
Part I

Directed Acyclic Graphs
Definition

A directed graph G is a **directed acyclic graph** (DAG) if there is no directed cycle in G.

![Graph Diagram]

1. Node 1
2. Node 2
3. Node 3
4. Node 4
Sources and Sinks

Definition

- A vertex u is a **source** if it has no in-coming edges.
- A vertex u is a **sink** if it has no out-going edges.
Simple DAG Properties

- Every **DAG** G has at least one source and at least one sink.
- If G is a **DAG** if and only if G^{rev} is a **DAG**.
- G is a **DAG** if and only each node is in its own strong connected component.

Formal proofs: exercise.
Simple DAG Properties

- Every **DAG** G has at least one source and at least one sink.
- If G is a **DAG** if and only if G^{rev} is a **DAG**.
- G is a **DAG** if and only each node is in its own strong connected component.

Formal proofs: exercise.
Simple DAG Properties

- Every **DAG** G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.
Simple DAG Properties

- Every **DAG** G has at least one source and at least one sink.
- If G is a **DAG** if and only if G^{rev} is a **DAG**.
- G is a **DAG** if and only each node is in its own strong connected component.

Formal proofs: exercise.
Simple DAG Properties

- Every **DAG** G has at least one source and at least one sink.
- If G is a **DAG** if and only if G^rev is a **DAG**.
- G is a **DAG** if and only each node is in its own strong connected component.

Formal proofs: exercise.
A **topological ordering/topological sorting** of $G = (V, E)$ is an ordering $<$ on V such that if $(u, v) \in E$ then $u < v$.
Lemma

A directed graph G can be topologically ordered iff it is a DAG.
Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

Only if: Suppose G is not a DAG and has a topological ordering \prec. G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$. Then $u_1 < u_2 < \ldots < u_k < u_1$! A contradiction.
Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

If: Consider the following algorithm:

- Pick a source u, output it.
- Remove u and all edges out of u.
- Repeat until graph is empty.
- Exercise: prove this gives an ordering.

Exercise: show above algorithm can be implemented in $O(m + n)$ time.
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: An Example

Output: 1 2 3 4
Topological Sort: Another Example

Diagram of a directed graph showing nodes a, b, c, d, e, f, g, h, with edges a → b, b → c, c → e, e → g, d → e, f → d, f → e, and h → g. The topological sort order is c, b, a, g, e, h, f, d.
DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

n singletons, $n!$ orderings.

Question: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?

linked list, 2^n orderings.

$\circ \rightarrow \bullet \rightarrow \bullet \rightarrow \ldots \rightarrow \circ$
Using DFS...

... to check for Acyclicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:
- Compute $\text{DFS}(G)$
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in $\text{DFS}(G)$.

Proposition

If G is a DAG and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.
Using DFS...
... to check for Acyclicity and compute Topological Ordering

Question
Given G, is it a **DAG**? If it is, generate a topological sort.

DFS based algorithm:
- Compute $\text{DFS}(G)$
- If there is a back edge then G is not a **DAG**.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition
G is a **DAG** iff there is no back-edge in $\text{DFS}(G)$.

Proposition
If G is a **DAG** and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.
Using DFS...

... to check for Acyclicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:
- Compute **DFS**(G)
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition
G is a DAG iff there is no back-edge in **DFS**(G).

Proposition
If G is a DAG and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.
Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: \((u, v)\) is a back edge implies there is a cycle \(C\) consisting of the path from \(v\) to \(u\) in DFS search tree and the edge \((u, v)\).

Only if: Suppose there is a cycle \(C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1\). Let \(v_i\) be first node in \(C\) visited in DFS. All other nodes in \(C\) are descendents of \(v_i\) since they are reachable from \(v_i\). Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1\)) is a back edge.
Back edge and Cycles

Proposition

\(G \) has a cycle iff there is a back-edge in \(\text{DFS}(G) \).

Proof.

If: \((u, v)\) is a back edge implies there is a cycle \(C \) consisting of the path from \(v \) to \(u \) in \(\text{DFS} \) search tree and the edge \((u, v)\).

Only if: Suppose there is a cycle \(C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1 \).
Let \(v_i \) be first node in \(C \) visited in \(\text{DFS} \).
All other nodes in \(C \) are descendents of \(v_i \) since they are reachable from \(v_i \).
Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1 \)) is a back edge.
Proposition

If G is a DAG and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.

Proof.

Assume $\text{post}(v) > \text{post}(u)$ and (u, v) is an edge in G. We derive a contradiction. One of two cases holds from DFS property.

- **Case 1:** $[\text{pre}(u), \text{post}(u)]$ is contained in $[\text{pre}(v), \text{post}(v)]$. Implies that (u, v) is a back edge but a DAG has no back edges!

- **Case 2:** $[\text{pre}(u), \text{post}(u)]$ is disjoint from $[\text{pre}(v), \text{post}(v)]$. This cannot happen since v would be explored from u.

Definition

A partially ordered set is a set S along with a binary relation \preceq such that \preceq is

(i) reflexive ($a \preceq a$ for all $a \in V$),
(ii) anti-symmetric ($a \preceq b$ and $a \neq b$ implies $b \not\preceq a$), and
(iii) transitive ($a \preceq b$ and $b \preceq c$ implies $a \preceq c$).

Example: For numbers in the plane define $(x, y) \preceq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
Definition

A **partially ordered set** is a set S along with a binary relation \preceq such that \preceq is

(i) reflexive ($a \preceq a$ for all $a \in V$),
(ii) anti-symmetric ($a \preceq b$ and $a \not= b$ implies $b \not\preceq a$), and
(iii) transitive ($a \preceq b$ and $b \preceq c$ implies $a \preceq c$).

Example: For numbers in the plane define $(x, y) \preceq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
A partially ordered set is a set S along with a binary relation \preceq such that \preceq is

(i) reflexive ($a \preceq a$ for all $a \in V$),

(ii) anti-symmetric ($a \preceq b$ and $a \neq b$ implies $b \not\preceq a$), and

(iii) transitive ($a \preceq b$ and $b \preceq c$ implies $a \preceq c$).

Example: For numbers in the plane define $(x, y) \preceq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
Linear time algorithm for finding all strong connected components of a directed graph
Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G = (V, E)$, output all its strong connected components.

Straightforward algorithm:

For each vertex $u \in V$ do

find $SCC(G, u)$ the strong component containing u as follows:

- Obtain $rch(G, u)$ using $DFS(G, u)$
- Obtain $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$
- Output $SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)$

Running time: $O(n(n + m))$

Is there an $O(n + m)$ time algorithm?
Finding all SCCs of a Directed Graph

Problem
Given a directed graph $G = (V, E)$, output all its strong connected components.

Straightforward algorithm:

For each vertex $u \in V$ do

find $\text{SCC}(G, u)$ the strong component containing u as follows:

Obtain $\text{rch}(G, u)$ using $\text{DFS}(G, u)$
Obtain $\text{rch}(G^{\text{rev}}, u)$ using $\text{DFS}(G^{\text{rev}}, u)$
Output $\text{SCC}(G, u) = \text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)$

Running time: $O(n(n + m))$

Is there an $O(n + m)$ time algorithm?
Finding all SCCs of a Directed Graph

Problem
Given a directed graph \(G = (V, E) \), output all its strong connected components.

Straightforward algorithm:

For each vertex \(u \in V \) do

find \(SCC(G, u) \) the strong component containing \(u \) as follows:

Obtain \(rch(G, u) \) using \(DFS(G, u) \)
Obtain \(rch(G^{rev}, u) \) using \(DFS(G^{rev}, u) \)
Output \(SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u) \)

Running time: \(O(n(n + m)) \)

Is there an \(O(n + m) \) time algorithm?
Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.
Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph.

Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do $\text{DFS}(u)$ to compute $\text{SCC}(u)$
- Remove $\text{SCC}(u)$ and repeat

Justification

- $\text{DFS}(u)$ only visits vertices (and edges) in $\text{SCC}(u)$
- $\text{DFS}(u)$ takes time proportional to size of $\text{SCC}(u)$
- Therefore, total time $O(n + m)$!
Big Challenge(s)

How do we find a vertex in the sink SCC of G_{SCC}?

Can we obtain an *implicit* topological sort of G_{SCC} without computing G_{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
Definition

Given G and a SCC S of G, define $\text{post}(S) = \max_{u \in S} \text{post}(u)$ where post numbers are with respect to some $\text{DFS}(G)$.
An Example

Figure: Graph G

Figure: Graph with pre-post times for DFS (A); black edges in tree

Figure: G^{SCC} with post times
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G_{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G_{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u')$.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u')$.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G_{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G_{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u')$.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u')$.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $post(S) > post(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $DFS(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $post(u) > post(u')$.

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u')$.

Corollary

Ordering SCCs in decreasing order of post\((S)\) gives a topological ordering of \(G^{SCC}\)

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So...

\textbf{DFS}(G) gives some information on topological ordering of \(G^{SCC}\)!
Corollary

Ordering SCCs in decreasing order of post(S) gives a topological ordering of G^{SCC}

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So...

DFS(G) gives some information on topological ordering of G^{SCC}!
An Example

Figure: Graph G

Figure: Graph with pre-post times for DFS (A); black edges in tree

Figure: G^{SCC} with post times
Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph.

Algorithm

1. Let u be a vertex in a sink SCC of G^{SCC}
2. Do $\text{DFS}(u)$ to compute $\text{SCC}(u)$
3. Remove $\text{SCC}(u)$ and repeat

Justification

1. $\text{DFS}(u)$ only visits vertices (and edges) in $\text{SCC}(u)$
2. $\text{DFS}(u)$ takes time proportional to size of $\text{SCC}(u)$
3. Therefore, total time $O(n + m)$!
Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
Proposition

The vertex u with the highest post visit time belongs to a source SCC in G^{SCC}

Proof.

- $\text{post}(\text{SCC}(u)) = \text{post}(u)$
- Thus, $\text{post}(\text{SCC}(u))$ is highest and will be output first in topological ordering of G^{SCC}.
Proposition

The vertex \(u \) with the highest post visit time belongs to a source SCC in \(G^{\text{SCC}} \).

Proof.

- \(\text{post}(\text{SCC}(u)) = \text{post}(u) \)
- Thus, \(\text{post}(\text{SCC}(u)) \) is highest and will be output first in topological ordering of \(G^{\text{SCC}} \).
Finding Sinks

Proposition

The vertex u with highest post visit time in $\text{DFS}(G^\text{rev})$ belongs to a sink SCC of G.

Proof.

- u belongs to source SCC of G^rev
- Since graph of SCCs of G^rev is the reverse of G^{SCC}, $\text{SCC}(u)$ is sink SCC of G.
Proposition

The vertex u with highest post visit time in $\text{DFS}(G^{\text{rev}})$ belongs to a sink SCC of G.

Proof.

- u belongs to source SCC of G^{rev}
- Since graph of SCCs of G^{rev} is the reverse of G^{SCC}, SCC(u) is sink SCC of G.
Linear Time Algorithm

Do $\text{DFS}(G^{\text{rev}})$ and sort vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
 if u is not visited then
 $\text{DFS}(u)$
 Let S_u be the nodes reached by u
 Output S_u as a strong connected component
 Remove S_u from G

Analysis

Running time is $O(n + m)$. (Exercise)
Linear Time Algorithm: An Example

Figure: Graph G

Order of second DFS: $\text{DFS}(G) = \{G\}; \text{DFS}(H) = \{H\}; \text{DFS}(B) = \{B, E, F\}; \text{DFS}(A) = \{A, C, D\}.$
Linear Time Algorithm: An Example

Figure: Graph G

Order of second DFS: $\text{DFS}(G) = \{G\}$; $\text{DFS}(H) = \{H\}$; $\text{DFS}(B) = \{B, E, F\}$; $\text{DFS}(A) = \{A, C, D\}$.

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS.
Linear Time Algorithm: An Example

Figure: Graph G

Figure: G^rev with pre-post times. Red edges not traversed in DFS

Order of second DFS: $\text{DFS}(G) = \{G\}$; $\text{DFS}(H) = \{H\}$; $\text{DFS}(B) = \{B, E, F\}$; $\text{DFS}(A) = \{A, C, D\}$.
Linear Time Algorithm: An Example

Order of second DFS: $\text{DFS}(G) = \{G\}; \text{DFS}(H) = \{H\}; \text{DFS}(B) = \{B, E, F\}; \text{DFS}(A) = \{A, C, D\}$.
Linear Time Algorithm: An Example

Figure: Graph G

Order of second DFS: $\text{DFS}(G) = \{G\}$; $\text{DFS}(H) = \{H\}$; $\text{DFS}(B) = \{B, E, F\}$; $\text{DFS}(A) = \{A, C, D\}$.

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS.
Linear Time Algorithm: An Example

Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS

Order of second DFS: $\text{DFS}(G) = \{G\}; \text{DFS}(H) = \{H\};$

$\text{DFS}(B) = \{B, E, F\}; \text{DFS}(A) = \{A, C, D\}.$
Linear Time Algorithm: An Example

Figure: Graph G

Order of second DFS: $\text{DFS}(G) = \{G\}$; $\text{DFS}(H) = \{H\}$; $\text{DFS}(B) = \{B, E, F\}$; $\text{DFS}(A) = \{A, C, D\}$.

Figure: G^{rev} with pre-post times. Red edges not traversed in DFS.
Obtaining the meta-graph from strong connected components

Exercise: Given all the strong connected components of a directed graph $G = (V, E)$ show that the meta-graph G_{SCC} can be obtained in $O(m + n)$ time.
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and DFS (u_k) will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider $\text{DFG}(G^{\text{rev}})$ and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and $\text{DFS}(u_k)$ will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and $\text{DFS}(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and DFS (u_k) will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider $\text{DFG}(G^{\text{rev}})$ and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and $\text{DFS}(u_k)$ will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and $\text{DFS}(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that post(u_i) = post(S_i) = $\max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and DFS (u_k) will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and DFS (u_k) will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Part III

An Application to make
Unix utility for automatically building large software applications

- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them
Unix utility for automatically building large software applications

A makefile specifies
- Object files to be created,
- Source/object files to be used in creation, and
- How to create them
Unix utility for automatically building large software applications

A makefile specifies
- Object files to be created,
- Source/object files to be used in creation, and
- How to create them
Unix utility for automatically building large software applications

A makefile specifies

- Object files to be created,
- Source/object files to be used in creation, and
- How to create them
Unix utility for automatically building large software applications

A makefile specifies

- Object files to be created,
- Source/object files to be used in creation, and
- How to create them
An Example makefile

project: main.o utils.o command.o
 cc -o project main.o utils.o command.o

main.o: main.c defs.h
 cc -c main.c

utils.o: utils.c defs.h command.h
 cc -c utils.c

command.o: command.c defs.h command.h
 cc -c command.c
makefile as a Digraph

```
main.c  ->  main.o  ->  project
    |                     |
    v                     v
utils.c  ->  utils.o  ->  project
    |                     |
    v                     v
defs.h  ->  utils.o
    |                    |
    v                    v
command.h  ->  command.o
    |                   |
    v                   v
command.c
```
Computational Problems for make

- Is the makefile reasonable?
 - If it is reasonable, in what order should the object files be created?
 - If it is not reasonable, provide helpful debugging information.
 - If some file is modified, find the fewest compilations needed to make application consistent.
Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
 - If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.
Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.
Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.
Is the makefile reasonable? Is G a DAG?

If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.

If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.

If some file is modified, find the fewest compilations needed to make application consistent.

Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.
Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.
Is the makefile reasonable? Is G a DAG?

If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.

If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.

If some file is modified, find the fewest compilations needed to make application consistent.

- Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.
Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.
Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.
Take away Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.

- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.

- DAGs arise in many applications and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).