NP Completeness and Cook-Levin Theorem

Lecture 22
April 19, 2011
P and NP and Turing Machines

- **P**: set of decision problems that have polynomial time algorithms
- **NP**: set of decision problems that have polynomial time non-deterministic algorithms

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
P and NP and Turing Machines

- **P**: set of decision problems that have polynomial time algorithms
- **NP**: set of decision problems that have polynomial time non-deterministic algorithms

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
P and NP and Turing Machines

- **P**: set of decision problems that have polynomial time algorithms
- **NP**: set of decision problems that have polynomial time non-deterministic algorithms

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
P and **NP** and Turing Machines

- **P**: set of decision problems that have polynomial time algorithms
- **NP**: set of decision problems that have polynomial time non-deterministic algorithms

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
P and NP and Turing Machines

- **P**: set of decision problems that have polynomial time algorithms
- **NP**: set of decision problems that have polynomial time non-deterministic algorithms

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
Turing Machines: Recap

- Infinite tape
- Finite state control
- Input at beginning of tape
- Special tape letter “blank” □
- Head can move only one cell to left or right
Turing Machines: Formally

A Turing Machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:

- Q is set of states in finite control
- q_0 start state, q_{accept} is accept state, q_{reject} is reject state
- Σ is input alphabet, Γ is tape alphabet (includes \square)
- $\delta : Q \times \Gamma \rightarrow \{L, R\} \times \Gamma \times Q$ is transition function
 - $\delta(q, a) = (q', b, L)$ means that M in state q and head seeing a on tape will move to state q' while replacing a on tape with b and head moves left.

$L(M)$: language accepted by M is set of all input strings s on which M accepts; that is:

- TM is started in state q_0.
- Initially, the tape head is located at the first cell.
- The tape contain s on the tape followed by blanks.
- The TM halts in the state q_{accept}.
Definition

M is a polynomial time TM if there is some polynomial \(p(\cdot) \) such that on all inputs \(w \), M halts in \(p(|w|) \) steps.

Definition

L is a language in P iff there is a polynomial time TM M such that \(L = L(M) \).
Definition

L is an **NP** language iff there is a *non-deterministic* polynomial time **TM** M such that $L = L(M)$.

Non-deterministic **TM**: each step has a choice of moves

- $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$.
 - Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).

- $L(M)$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}
NP via TMs

Definition

L is an NP language iff there is a *non-deterministic* polynomial time TM M such that $L = L(M)$.

Non-deterministic TM: each step has a choice of moves

- $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$.

 Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).

- $L(M)$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}.
Two definition of \textbf{NP}:

- L is in \textbf{NP} iff L has a polynomial time certifier $C(\cdot, \cdot)$.
- L is in \textbf{NP} iff L is decided by a non-deterministic polynomial time \textbf{TM} M.

\textbf{Claim}: Two definitions are equivalent. Why?

Informal proof idea: the certificate t for C corresponds to non-deterministic choices of M and vice-versa. In other words L is in \textbf{NP} iff L is accepted by a \textbf{NTM} which first guesses a proof t of length poly in input $|s|$ and then acts as a deterministic \textbf{TM}.
Non-deterministic TMs vs certifiers

Two definition of NP:

- \(L \) is in \(NP \) iff \(L \) has a polynomial time certifier \(C(\cdot, \cdot) \).
- \(L \) is in \(NP \) iff \(L \) is decided by a non-deterministic polynomial time TM \(M \).

Claim: Two definitions are equivalent. Why?

Informal proof idea: the certificate \(t \) for \(C \) corresponds to non-deterministic choices of \(M \) and vice-versa. In other words \(L \) is in \(NP \) iff \(L \) is accepted by a NTM which first guesses a proof \(t \) of length poly in input \(|s| \) and then acts as a deterministic TM.
A non-deterministic machine has choices at each step and accepts a string if there exists a set of choices which lead to a final state.

Equivalently the choices can be thought of as guessing a solution and then verifying that solution. In this view all the choices are made a priori and hence the verification can be deterministic. The “guess” is the “proof” and the “verifier” is the “certifier”.

We reemphasize the asymmetry inherent in the definition of non-determinism. Strings in the language can be easily verified. No easy way to verify that a string is not in the language.
Why do we use TMs sometimes and RAM Model other times?

- **TMs** are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.
 - Simplicity is useful in proofs.
 - The “right” formal bare-bones model when dealing with subtleties.

- **RAM** model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes
 - Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space
“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition
- Hardest problem must be in NP
- Hardest problem must be at least as “difficult” as every other problem in NP
NP-Complete Problems

Definition
A problem X is said to be NP-Complete if
1. $X \in \text{NP}$
2. (Hardness) For any $Y \in \text{NP}$, $Y \leq_p X$
Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time iff $P = NP$

Proof.

\Rightarrow Suppose X can be solved in polynomial time

- Let $Y \in NP$. We know $Y \leq_P X$
- We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time
- Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$
- Since $P \subseteq NP$, we have $P = NP$

\Leftarrow Since $P = NP$, and $X \in NP$, we have a polynomial time algorithm for X
NP-Hard Problems

Definition

A problem X is said to be **NP-Hard** if

- *(Hardness)* For any $Y \in \text{NP}$, $Y \leq_p X$

An **NP-Hard** problem need not be in **NP**!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.
Consequences of proving **NP-Completeness**

If X is **NP-Complete**
- Since we believe $P \neq NP$,
- and solving X implies $P = NP$.

X is **unlikely** to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.
Consequences of proving **NP-Completeness**

If X is **NP-Complete**

- Since we believe $P \neq NP$,
- and solving X implies $P = NP$.

X is **unlikely** to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.
A circuit is a directed *acyclic* graph with

- **Input** vertices (without incoming edges) labelled with 0, 1 or a distinct variable
- Every other vertex is labelled ∨, ∧ or ¬
- Single node output vertex with no outgoing edges
Circuits

Definition

A circuit is a directed *acyclic* graph with

- **Input** vertices (without incoming edges) labelled with 0, 1 or a distinct variable
- Every other vertex is labelled \lor, \land or \neg
- Single node output vertex with no outgoing edges
A circuit is a directed *acyclic* graph with

- **Input** vertices (without incoming edges) labelled with 0, 1 or a distinct variable
- Every other vertex is labelled ∨, ∧ or ¬
- Single node **output** vertex with no outgoing edges
Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)

CSAT is NP-Complete.

Need to show

- CSAT is in NP
- every NP problem X reduces to CSAT.
Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)
Given a circuit as input, is there an assignment to the input variables that causes the output to get value \(1\)?

Theorem (Cook-Levin)

\textbf{CSAT is NP-Complete.}

Need to show

- \textbf{CSAT} is in \textbf{NP}
- every \textbf{NP} problem \textbf{X} reduces to \textbf{CSAT}.
Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)
Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)
CSAT is NP-Complete.

Need to show
- CSAT is in NP
- every NP problem X reduces to CSAT.
Claim

CSAT \textit{is in NP}.

- **Certificate**: assignment to input variables
- **Certifier**: evaluate the value of each gate in a topological sort of DAG and check the output gate value
Claim

CSAT is in **NP**.

- **Certificate**: assignment to input variables
- **Certifier**: evaluate the value of each gate in a topological sort of DAG and check the output gate value
CSAT is NP-hard: Idea

Need to show that every NP problem X reduces to CSAT.

What does it mean that $X \in \text{NP}$?

$X \in \text{NP}$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:

- If s is a YES instance ($s \in X$) then there is a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.
- If s is a NO instance ($s \not\in X$) then for every string t of length at $p(|s|)$, $C(s, t)$ says NO.
- $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time)
CSAT is NP-hard: Idea

Need to show that every NP problem X reduces to CSAT.

What does it mean that X ∈ NP?

X ∈ NP implies that there are polynomials p() and q() and certifier/verifier program C such that for every string s the following is true:

- If s is a YES instance (s ∈ X) then there is a proof t of length p(|s|) such that C(s, t) says YES.
- If s is a NO instance (s ∉ X) then for every string t of length at p(|s|), C(s, t) says NO.
- C(s, t) runs in time q(|s| + |t|) time (hence polynomial time)
CSAT is \textbf{NP}-hard: Idea

Need to show that every \textbf{NP} problem X reduces to CSAT.

What does it mean that $X \in \textbf{NP}$?

$X \in \textbf{NP}$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:

- If s is a YES instance ($s \in X$) then there is a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.
- If s is a NO instance ($s \not\in X$) then for every string t of length at $p(|s|)$, $C(s, t)$ says NO.
- $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time)
CSAT is **NP**-hard: Idea

Need to show that every **NP** problem X reduces to **CSAT**.

What does it mean that $X \in \textbf{NP}$?

$X \in \textbf{NP}$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:

- If s is a YES instance ($s \in X$) then there is a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.
- If s is a NO instance ($s \not\in X$) then for every string t of length at $p(|s|)$, $C(s, t)$ says NO.
- $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time)
Reducing X to CSAT

X is in \textbf{NP} means we have access to $p(), q(), C(\cdot, \cdot)$. What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine! How are $p()$ and $q()$ given? As numbers. Example: if 3 is given then $p(n) = n^3$.

Thus an \textbf{NP} problem is essentially a three tuple $< p, q, C >$ where C is either a program or a \textbf{TM}.
Reducing X to CSAT

X is in **NP** means we have access to $p(), q(), C(\cdot, \cdot)$.

What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!

How are $p()$ and $q()$ given? As numbers.

Example: if 3 is given then $p(n) = n^3$.

Thus an **NP** problem is essentially a three tuple $< p, q, C >$ where C is either a program or a **TM**.
Reducing Σ to CSAT

Σ is in NP means we have access to $p(), q(), C(\cdot, \cdot)$. What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine! How are $p()$ and $q()$ given? As numbers.

Example: if 3 is given then $p(n) = n^3$.

Thus an NP problem is essentially a three tuple $< p, q, C >$ where C is either a program or a TM.
Reducing X to CSAT

X is in NP means we have access to $p(), q(), C(\cdot, \cdot)$.

What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!

How are $p()$ and $q()$ given? As numbers.

Example: if 3 is given then $p(n) = n^3$.

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or a TM.
Reducing X to CSAT

Thus an \textbf{NP} problem is essentially a three tuple $< p, q, C >$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to CSAT? Need an algorithm A that

- takes s (and $< p, q, C >$) and creates a circuit G in polynomial time in $|s|$ (note that $< p, q, C >$ are fixed).
- G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

Thus an NP problem is essentially a three tuple $< p, q, C >$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to CSAT? Need an algorithm A that

- takes s (and $< p, q, C >$) and creates a circuit G in polynomial time in $|s|$ (note that $< p, q, C >$ are fixed).
- G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

Thus an NP problem is essentially a three tuple $< p, q, C >$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to CSAT? Need an algorithm A that

- takes s (and $< p, q, C >$) and creates a circuit G in polynomial time in $|s|$ (note that $< p, q, C >$ are fixed).
- G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing \(X \) to \textbf{CSAT}

Thus an \textbf{NP} problem is essentially a three tuple \(< p, q, C > \) where \(C \) is either a program or \textbf{TM}.

Problem X: Given string \(s \), is \(s \in X \)?

Same as the following: is there a proof \(t \) of length \(p(|s|) \) such that \(C(s, t) \) says \textbf{YES}.

How do we reduce \(X \) to \textbf{CSAT}? Need an algorithm \(\mathcal{A} \) that

- takes \(s \) (and \(< p, q, C > \)) and creates a circuit \(G \) in polynomial time in \(|s| \) (note that \(< p, q, C > \) are fixed).
- \(G \) is satisfiable if and only if there is a proof \(t \) such that \(C(s, t) \) says \textbf{YES}.
Reducing X to CSAT

Thus an NP problem is essentially a three tuple $< p, q, C >$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to CSAT? Need an algorithm A that

- takes s (and $< p, q, C >$) and creates a circuit G in polynomial time in $|s|$ (note that $< p, q, C >$ are fixed).

- G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that
- takes s (and $<p, q, C>$) and creates a circuit G in polynomial time in $|s|$ (note that $<p, q, C>$ are fixed).
- G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
- Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
- We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
- Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that

- takes s (and < p, q, C >) and creates a circuit G in polynomial time in |s| (note that < p, q, C > are fixed).
- G is satisfiable if and only if there is a proof t such that C(s, t) says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

- Convert C(s, t) into a circuit G with t as unknown inputs (rest is known including s)
- We know that |t| = p(|s|) so express boolean string t as p(|s|) variables t_1, t_2, ..., t_k where k = p(|s|).
- Asking if there is a proof t that makes C(s, t) say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, ..., t_k that will make G evaluate to true/YES.
Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that

- takes s (and $<p, q, C>$) and creates a circuit G in polynomial
time in $|s|$ (note that $<p, q, C>$ are fixed).
- G is satisfiable if and only if there is a proof t such that $C(s, t)$
says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

- Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest
is known including s)
- We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$
variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
- Asking if there is a proof t that makes $C(s, t)$ say YES is same
as whether there is an assignment of values to “unknown”
variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm \mathcal{A} that
- takes s (and $<p, q, C>$) and creates a circuit G in polynomial time in $|s|$ (note that $<p, q, C>$ are fixed).
- G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
- Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
- We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
- Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing \(X \) to \textbf{CSAT}

How do we reduce \(X \) to \textbf{CSAT}? Need an algorithm \(\mathcal{A} \) that

- takes \(s \) (and \(< p, q, C > \)) and creates a circuit \(G \) in polynomial time in \(|s| \) (note that \(< p, q, C > \) are fixed).
- \(G \) is satisfiable if and only if there is a proof \(t \) such that \(C(s, t) \) says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

- Convert \(C(s, t) \) into a circuit \(G \) with \(t \) as unknown inputs (rest is known including \(s \))
- We know that \(|t| = p(|s|) \) so express boolean string \(t \) as \(p(|s|) \) variables \(t_1, t_2, \ldots, t_k \) where \(k = p(|s|) \).
- Asking if there is a proof \(t \) that makes \(C(s, t) \) say YES is same as whether there is an assignment of values to “unknown” variables \(t_1, t_2, \ldots, t_k \) that will make \(G \) evaluate to true/YES.
Example: **Independent Set**

- **Problem:** Does $G = (V, E)$ have an **Independent Set** of size $\geq k$?
 - **Certificate:** Set $S \subseteq V$
 - **Certifier:** Check $|S| \geq k$ and no pair of vertices in S is connected by an edge

Formally, why is **Independent Set** in **NP**?
Example: **Independent Set**

- **Problem:** Does $G = (V, E)$ have an **Independent Set** of size $\geq k$?
 - **Certificate:** Set $S \subseteq V$
 - **Certifier:** Check $|S| \geq k$ and no pair of vertices in S is connected by an edge

Formally, why is **Independent Set** in **NP**?
Example: Independent Set

Formally why is Independent Set in NP?

- **Input:**
 \[\langle n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k \rangle \]
 encodes \(\langle G, k \rangle \).
 - \(n \) is number of vertices in \(G \)
 - \(y_{i,j} \) is a bit which is 1 if edge \((i, j)\) is in \(G \) and 0 otherwise (adjacency matrix representation)
 - \(k \) is size of independent set

- **Certificate:** \(t = t_1 t_2 \ldots t_n \). Interpretation is that \(t_i \) is 1 if vertex \(i \) is in the independent set, 0 otherwise.
Certifier \(C(s, t) \) for Independent Set:

\[
\text{if } (t_1 + t_2 + \ldots + t_n < k) \text{ then } \\
\quad \text{return NO} \\
\text{else} \\
\quad \text{for each } (i, j) \text{ do} \\
\quad \quad \text{if } (t_i \land t_j \land y_{i,j}) \text{ then} \\
\quad \quad \quad \text{return NO} \\
\text{return YES}
\]
Example: Independent Set

Figure: Graph G with $k = 2$
Circuit from Certifier
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does step mean?

Real computers difficult to reason with mathematically because
- instruction set is too rich
- pointers and control flow jumps in one step
- assumption that pointer to code fits in one word

Turing Machines
- simpler model of computation to reason with
- can simulate real computers with polynomial slow down
- all moves are local (head moves only one cell)
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does *step* mean?

Real computers difficult to reason with mathematically because
- instruction set is too rich
- pointers and control flow jumps in one step
- assumption that pointer to code fits in one word

Turing Machines
- simpler model of computation to reason with
- can simulate real computers with *polynomial* slow down
- all moves are *local* (head moves only one cell)
Certifiers that at TMs

Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M

Problem: Given M, input s, p, q decide if there is a proof t of length $p(|s|)$ such that M on s, t will halt in $q(|s|)$ time and say YES.

There is an algorithm A that can reduce above problem to CSAT mechanically as follows.

1. A first computes $p(|s|)$ and $q(|s|)$.
2. Knows that M can use at most $q(|s|)$ memory/tape cells
3. Knows that M can run for at most $q(|s|)$ time
4. Simulates the evolution of the state of M and memory over time using a big circuit.
Think of M’s state at time ℓ as a string $x^\ell = x_1 x_2 \ldots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.

At time 0 the state of M consists of input string s a guess t (unknown variables) of length $p(|s|)$ and rest $q(|s|)$ blank symbols.

At time $q(|s|)$ we wish to know if M stops in q_{accept} with say all blanks on the tape.

We write a circuit C_ℓ which captures the transition of M from time ℓ to time $\ell + 1$.

Composition of the circuits for all times 0 to $q(|s|)$ gives a big (still poly) sized circuit C.

The final output of C should be true if and only if the entire state of M at the end leads to an accept state.
NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:
- Use TMs as the code for certifier for simplicity
- Since $p()$ and $q()$ are known to A, it can set up all required memory and time steps in advance
- Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.
NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

- Use TMs as the code for certifier for simplicity
- Since $p()$ and $q()$ are known to A, it can set up all required memory and time steps in advance
- Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.
SAT is NP-Complete

- We have seen that SAT ∈ NP
- To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT

Instance of CSAT (we label each node):

```
Inputs:
1, a
? , b
? , c
0, d
? , e

Output:
¬, i
∧, j
∧, k
∧, f
∨, g
∨, h
```

Sariel (UIUC)
CS473
Spring 2011
Converting a circuit into a \textbf{CNF} formula

Label the nodes

\textbf{(A) Input circuit}

\textbf{(B) Label the nodes.}
Introduce a variable for each node

(B) Label the nodes.

(C) Introduce var for each node.
Converting a circuit into a **CNF** formula

Write a sub-formula for each variable that is true if the var is computed correctly.

\[x_k \quad \text{(Demand a sat’ assignment!)} \]
\[x_k = x_i \land x_k \]
\[x_j = x_g \land x_h \]
\[x_i = \neg x_f \]
\[x_h = x_d \lor x_e \]
\[x_g = x_b \lor x_c \]
\[x_f = x_a \land x_b \]
\[x_d = 0 \]
\[x_a = 1 \]

(C) Introduce var for each node.

(D) Write a sub-formula for each variable that is true if the var is computed correctly.
Converting a circuit into a **CNF** formula

Convert each sub-formula to an equivalent CNF formula

<table>
<thead>
<tr>
<th>x_k</th>
<th>x_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_k = x_i \land x_j$</td>
<td>$(\neg x_k \lor x_i) \land (\neg x_k \lor x_j) \land (x_k \lor \neg x_i \lor \neg x_j)$</td>
</tr>
<tr>
<td>$x_j = x_g \land x_h$</td>
<td>$(\neg x_j \lor x_g) \land (\neg x_j \lor x_h) \land (x_j \lor \neg x_g \lor \neg x_h)$</td>
</tr>
<tr>
<td>$x_i = \neg x_f$</td>
<td>$(x_i \lor x_f) \land (\neg x_i \lor x_f)$</td>
</tr>
<tr>
<td>$x_h = x_d \lor x_e$</td>
<td>$(x_h \lor \neg x_d) \land (x_h \lor \neg x_e) \land (\neg x_h \lor x_d \lor x_e)$</td>
</tr>
<tr>
<td>$x_g = x_b \lor x_c$</td>
<td>$(x_g \lor \neg x_b) \land (x_g \lor \neg x_c) \land (\neg x_g \lor x_b \lor x_c)$</td>
</tr>
<tr>
<td>$x_f = x_a \land x_b$</td>
<td>$(\neg x_f \lor x_a) \land (\neg x_f \lor x_b) \land (x_f \lor \neg x_a \lor \neg x_b)$</td>
</tr>
<tr>
<td>$x_d = 0$</td>
<td>$\neg x_d$</td>
</tr>
<tr>
<td>$x_a = 1$</td>
<td>x_a</td>
</tr>
</tbody>
</table>
Converting a circuit into a CNF formula

Take the conjunction of all the CNF sub-formulas

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.
Reduction: \(\text{CSAT} \leq_p \text{SAT} \)

- For each gate (vertex) \(v \) in the circuit, create a variable \(x_v \).
- **Case** \(\neg \): \(v \) is labeled \(\neg \) and has one incoming edge from \(u \) (so \(x_v = \neg x_u \)). In **SAT** formula generate, add clauses \((x_u \lor x_v) \), \((\neg x_u \lor \neg x_v) \). Observe that

\[
x_v = \neg x_u \text{ is true } \iff (x_u \lor x_v) \land (\neg x_u \lor \neg x_v) \text{ both true.}
\]
Case \lor: So $x_v = x_u \lor x_w$. In SAT formula generated, add clauses $(x_v \lor \neg x_u)$, $(x_v \lor \neg x_w)$, and $(\neg x_v \lor x_u \lor x_w)$. Again, observe that

$$x_v = x_u \lor x_w \text{ is true } \iff (x_v \lor \neg x_u), \quad (x_v \lor \neg x_w), \quad \text{all true.}$$
Reduction: $\text{CSAT} \leq_p \text{SAT}$

Continued...

- **Case \wedge:** So $x_v = x_u \land x_w$. In SAT formula generated, add clauses $(\neg x_v \lor x_u)$, $(\neg x_v \lor x_w)$, and $(x_v \lor \neg x_u \lor \neg x_w)$. Again observe that

\[x_v = x_u \land x_w \text{ is true } \iff (\neg x_v \lor x_u), \quad (\neg x_v \lor x_w), \quad (x_v \lor \neg x_u \lor \neg x_w) \text{ all true.} \]
Reduction: \textbf{CSAT} \leq_{P} \textbf{SAT}

Continued...

- If v is an input gate with a fixed value then we do the following. If $x_v = 1$ add clause x_v. If $x_v = 0$ add clause $\neg x_v$.
- Add the clause x_v where v is the variable for the output gate.
Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

\Rightarrow Consider a satisfying assignment a for C

- Find values of all gates in C under a
- Give value of gate v to variable x_v; call this assignment a'
- a' satisfies φ_C (exercise)

\Leftarrow Consider a satisfying assignment a for φ_C

- Let a' be the restriction of a to only the input variables
- Value of gate v under a' is the same as value of x_v in a
- Thus, a' satisfies C

Theorem

SAT is NP-Complete.
Proving that a problem \(X \) is \textbf{NP-Complete}

To prove \(X \) is \textbf{NP-Complete}, show

- Show \(X \) is in \textbf{NP}.
 - certificate/proof of polynomial size in input
 - polynomial time certifier \(C(s, t) \)
- Reduction from a known \textbf{NP-Complete} problem such as \textbf{CSAT} or \textbf{SAT} to \(X \)

\(\text{SAT} \leq_p X \) implies that every \textbf{NP} problem \(Y \leq_p X \). Why?

Transitivity of reductions:

\(Y \leq_p \text{SAT} \) and \(\text{SAT} \leq_p X \) and hence \(Y \leq_p X \).
To prove \(X \) is **NP-Complete**, show

- Show \(X \) is in **NP**.
 - certificate/proof of polynomial size in input
 - polynomial time certifier \(C(s, t) \)
- Reduction from a known **NP-Complete** problem such as **CSAT** or **SAT** to \(X \)

\(\text{SAT} \leq_P X \) implies that every \(\text{NP} \) problem \(Y \leq_P X \). Why?

Transitivity of reductions:

\(Y \leq_P \text{SAT} \) and \(\text{SAT} \leq_P X \) and hence \(Y \leq_P X \).
Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

- Show X is in NP.
 - certificate/proof of polynomial size in input
 - polynomial time certifier $C(s, t)$
- Reduction from a known NP-Complete problem such as CSAT or SAT to X

SAT $\leq_P X$ implies that every NP problem $Y \leq_P X$. Why?
Transitivity of reductions:

$Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.
NP-Completeness via Reductions

- **CSAT** is NP-Complete
- **CSAT \(\leq_p \) SAT** and SAT is in NP and hence SAT is NP-Complete
- **SAT \(\leq_p \) 3-SAT** and hence 3-SAT is NP-Complete
- **3-SAT \(\leq_p \) Independent Set** (which is in NP) and hence Independent Set is NP-Complete
- Vertex Cover is NP-Complete
- Clique is NP-Complete

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
NP-Completeness via Reductions

- **CSAT** is **NP-Complete**
- **CSAT** \leq_p **SAT** and **SAT** is in **NP** and hence **SAT** is **NP-Complete**
- **SAT** \leq_p **3-SAT** and hence **3-SAT** is **NP-Complete**
- **3-SAT** \leq_p Independent Set (which is in **NP**) and hence Independent Set is **NP-Complete**
- Vertex Cover is **NP-Complete**
- Clique is **NP-Complete**

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!