Chapter 17

Network Flow Algorithms

CS 473: Fundamental Algorithms, Spring 2011
March 29, 2011

17.1 Algorithm(s) for Maximum Flow

17.1.0.1 Greedy Approach

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

17.1.0.2 Greedy Approach: Issues

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge \((u, v)\)

17.2 Ford-Fulkerson Algorithm

17.2.0.3 Residual Graph

Definition 17.2.1 For a network \(G = (V, E)\) and flow \(f\), the residual graph \(G_f = (V', E')\) of \(G\) with respect to \(f\) is

- \(V' = V\)
- **Forward Edges**: For each edge \(e \in E\) with \(f(e) < c(e)\), we \(e \in E'\) with capacity \(c(e) - f(e)\)
- **Backward Edges**: For each edge \(e = (u, v) \in E\) with \(f(e) > 0\), we \((v, u) \in E'\) with capacity \(f(e)\)

17.2.0.4 Residual Graph Example

17.2.0.5 Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.
Lemma 17.2.2 Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Lemma 17.2.3 Let f and f' be two flows in G with $v(f') \geq v(f)$. Then there is a flow f'' of value $v(f') - v(f)$ in G_f.

Definition of $+$ and $-$ for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

17.2.0.6 Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

- Initialize f as 0
- For each edge (u, v) in G:
 - If $f(u, v) > 0$, set $f(u, v) = 0$
 - Find a flow f' in G_f such that $v(f') > 0$
 - Recursively compute a maximum flow f'' in G_f
- Output the flow $f + f''$

Iterative algorithm for finding a maximum flow:

- Initialize f as 0
- While there is a flow f' in G_f:
 - $f = f + f'$
 - Update G_f
- Output f
17.2.0.7 Ford-Fulkerson Algorithm

\[\text{algFordFulkerson}\]
\[
\begin{align*}
\text{for every edge } e, & \quad f(e) = 0 \\
G_f & \text{ is residual graph of } G \text{ with respect to } f \\
\text{while } G_f \text{ has a simple } s-t \text{ path do} & \\
& \text{let } P \text{ be simple } s-t \text{ path in } G_f \\
& f = \text{augment}(f, P) \\
& \text{Construct new residual graph } G_f
\end{align*}
\]

\[\text{augment}(f, P)\]
\[
\begin{align*}
\text{let } b & \text{ be bottleneck capacity, i.e., min capacity of edges in } P \text{ (in } G_f) \\
\text{for each edge } (u, v) & \text{ in } P \text{ do} \\
& \text{if } e = (u, v) \text{ is a forward edge then} \\
& f(e) = f(e) + b \\
& \text{else } (* (u, v) \text{ is a backward edge } *) \\
& \quad \text{let } e = (v, u) \text{ (* (v, u) is in } G \text{ *)} \\
& f(e) = f(e) - b \\
\text{return } f
\end{align*}
\]

17.2.0.8 Example

\[
\begin{array}{c}
\begin{array}{c}
\text{\textbullet } 10 \\
\text{\textbullet } 20 \\
\text{\textbullet } 15
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{\textbullet } 10 \\
\text{\textbullet } 20 \\
\text{\textbullet } 15
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{\textbullet } 30 \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{\textbullet } 10 \\
\text{\textbullet } 20 \\
\text{\textbullet } 15
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{\textbullet } u \\
\text{\textbullet } t
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{\textbullet } u \\
\text{\textbullet } t
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{\textbullet } u \\
\text{\textbullet } t
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{\textbullet } u \\
\text{\textbullet } t
\end{array}
\end{array}
\end{array}
\]
17.2.0.9 Example continued

17.2.0.10 Example continued
17.3 Correctness and Analysis

17.3.1 Termination

17.3.1.1 Properties about Augmentation: Flow

Lemma 17.3.1 If f is a flow and P is a simple s-t path in G_f, then $f' = \text{augment}(f, P)$ is also a flow.

Proof: Verify that f' is a flow. Let b be augmentation amount.

- Capacity constraint: If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $e = (v, u)$, $f'(e) = f(e) - b$ and $b \leq f(e)$. Both cases $0 \leq f'(e) \leq c(e)$.

- Conservation constraint: Let v be an internal node. Let e_1, e_2 be edges of P incident to v. Four cases based on whether e_1, e_2 are forward or backward edges. Check cases (see fig next slide).

17.3.1.2 Properties about Augmentation: Conservation Constraint

17.3.1.3 Properties about Augmentation: Integer Flow

Lemma 17.3.2 At every stage of the Ford-Fulkerson algorithm, the flow values $f(e)$ and the residual capacities in G_f are integers.

Proof: Initial flow and residual capacities are integers. Suppose lemma holds for j iterations. Then in $(j + 1)$st iteration, minimum capacity edge b is an integer, and so flow after augmentation is an integer.
Figure 17.3: Augmenting path P in G_f and corresponding change of flow in G. Red edges are backward edges.

17.3.1.4 Progress in Ford-Fulkerson

Proposition 17.3.3 Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$.

Proof: Let P be an augmenting path, i.e., P is a simple s-t path in residual graph
- First edge e in P must leave s
- Original network G has no incoming edges to s; hence e is a forward edge
- P is simple and so never returns to s
- Thus, value of flow increases by the flow on edge e

17.3.1.5 Termination Proof

Theorem 17.3.4 Let C be the minimum cut value; in particular $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof: The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time
- Number of iterations $\leq C$
- Number of edges in $G_f \leq 2m$
- Time to find augmenting path is $O(n + m)$
- Running time is $O(C(n + m))$ (or $O(mC)$).
17.3.1.6 Efficiency of Ford-Fulkerson

Running time = \(O(mC) \) is not polynomial. Can the running time be as \(\Omega(mC) \) or is our analysis weak? Ford-Fulkerson can take \(\Omega(C) \) iterations.

17.3.2 Correctness

17.3.2.1 Correctness of Ford-Fulkerson Augmenting Path Algorithm

Question: When the algorithm terminates, is the flow computed the maximum s-t flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

17.3.2.2 Recalling Cuts

Definition 17.3.5 Given a flow network an s-t cut is a set of edges \(E' \subset E \) such that removing \(E' \) disconnects \(s \) from \(t \): in other words there is no directed \(s \to t \) path in \(E - E' \). Capacity of cut \(E' \) is \(\sum_{e \in E'} c(e) \).

Let \(A \subset V \) such that

- \(s \in A, \, t \notin A \)
- \(B = V - A \) and hence \(t \in B \)
Define \((A, B) = \{(u, v) \in E \mid u \in A, v \in B\}\)

Claim 17.3.6 \((A, B)\) is an \(s\-t\) cut.

Recall: Every minimal \(s\-t\) cut \(E'\) is a cut of the form \((A, B)\).

17.3.2.3 Ford-Fulkerson Correctness

Lemma 17.3.7 If there is no \(s\-t\) path in \(G_f\) then there is some cut \((A, B)\) such that \(v(f) = c(A, B)\)

Proof: Let \(A\) be all vertices reachable from \(s\) in \(G_f\); \(B = V \setminus A\)

- \(s \in A\) and \(t \in B\). So \((A, B)\) is an \(s\-t\) cut in \(G\)

- If \(e = (u, v) \in G\) with \(u \in A\) and \(v \in B\), then \(f(e) = c(e)\) (saturated edge) because otherwise \(v\) is reachable from \(s\) in \(G_f\)

17.3.2.4 Lemma Proof Continued

Proof:

- If \(e = (u', v') \in G\) with \(u' \in B\) and \(v' \in A\), then \(f(e) = 0\) because otherwise \(u'\) is reachable from \(s\) in \(G_f\)

- Thus,

\[
v(f) = f^{\text{out}}(A) - f^{\text{in}}(A)
= f^{\text{out}}(A) - 0
= c(A, B) - 0
= c(A, B)
\]
17.3.2.5 Example

17.3.2.6 Ford-Fulkerson Correctness

Theorem 17.3.8 The flow returned by the algorithm is the maximum flow.

Proof:

- For any flow f and s-t cut (A, B), $v(f) \leq c(A, B)$
- For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-T cut (A^*, B^*)
- Hence, f^* is maximum
17.3.2.7 Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem 17.3.9 For any network G, the value of a maximum s-t flow is equal to the capacity of the minimum s-t cut.

Proof: Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.

17.3.2.8 Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem 17.3.10 For any network G with integer capacities, there is a maximum s-t flow that is integer valued.

Proof: Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.

17.4 Polynomial Time Algorithms

17.4.0.9 Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?
17.4.0 Polynοmial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?
Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm?
Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.

17.4.1 Capacity Scaling Algorithm

17.4.1.1 Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson

- How do we find path with largest bottleneck capacity?
 - Assume we know \(\Delta \) the bottleneck capacity
 - Remove all edges with residual capacity \(\leq \Delta \)
 - Check if there is a path from \(s \) to \(t \)
 - Do binary search to find largest \(\Delta \)
 - Running time: \(O(m \log C) \)

- Can we bound the number of augmentations? Can show that in \(O(m \log C) \) augmentations the algorithm reaches a max flow. This leads to an \(O(m^2 \log^2 C) \) time algorithm.

17.4.1.2 Augmenting Paths with Large Bottleneck Capacity

How do we find path with largest bottleneck capacity?

- Max bottleneck capacity is one of the edge capacities. Why?

- Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.

- Algorithm’s running time is \(O(m \log m) \).

- Different algorithm that also leads to \(O(m \log m) \) time algorithm by adapting Prim’s algorithm.