Network Flow Algorithms

Lecture 17
March 29, 2011

Part I

Algorithm(s) for Maximum Flow
Greedy Approach

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy Approach: Issues

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to “push-back” flow along edge (u, v)
Residual Graph

Definition
For a network \(G = (V, E) \) and flow \(f \), the residual graph \(G_f = (V', E') \) of \(G \) with respect to \(f \) is

- \(V' = V \)
- **Forward Edges:** For each edge \(e \in E \) with \(f(e) < c(e) \), we have \(e \in E' \) with capacity \(c(e) - f(e) \)
- **Backward Edges:** For each edge \(e = (u, v) \in E \) with \(f(e) > 0 \), we have \((v, u) \in E' \) with capacity \(f(e) \)

Residual Graph Example

Figure: Flow in red edges

Figure: Residual Graph
Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Lemma

Let f and f' be two flows in G with $v(f') \geq v(f)$. Then there is a flow f'' of value $v(f') - v(f)$ in G_f.

Definition of $+$ and $-$ for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow(G, s, t):
- If the flow from s to t is 0
 - return 0
- Find any flow f with $v(f) > 0$ in G
- Recursively compute a maximum flow f' in G_f
- Output the flow $f + f'$

Iterative algorithm for finding a maximum flow:

MaxFlow(G, s, t):
- Start with flow f that is 0 on all edges
- While there is a flow f' in G_f with $v(f') > 0$
 - $f = f + f'$
 - Update G_f
- endWhile
- Output f
Ford-Fulkerson Algorithm

algFordFulkerson

for every edge \(e \), \(f(e) = 0 \)

\(G_f \) is residual graph of \(G \) with respect to \(f \)

while \(G_f \) has a simple \(s-t \) path do

let \(P \) be simple \(s-t \) path in \(G_f \)

\(f = \text{augment}(f, P) \)

Construct new residual graph \(G_f \)

augment \((f, P)\)

let \(b \) be bottleneck capacity, i.e., \min \text{ capacity of edges in } P \text{ (in } G_f \text{)}

for each edge \((u, v)\) in \(P \) do

if \(e = (u, v) \) is a forward edge then

\(f(e) = f(e) + b \)

else (* \((u, v) \) is a backward edge *)

let \(e = (v, u) \) (* \((v, u) \) is in \(G \) *)

\(f(e) = f(e) - b \)

return \(f \)

Example

![Graph example]

Sariel (UIUC)
CS473
Spring 2011
9 / 37
Properties about Augmentation: Flow

Lemma

If \(f \) is a flow and \(P \) is a simple \(s-t \) path in \(G_f \), then \(f' = \text{augment}(f, P) \) is also a flow.

Proof.

Verify that \(f' \) is a flow. Let \(b \) be augmentation amount.

- **Capacity constraint:** If \((u, v) \in P \) is a forward edge then \(f'(e) = f(e) + b \) and \(b \leq c(e) - f(e) \). If \((u, v) \in P \) is a backward edge, then letting \(e = (v, u), f'(e) = f(e) - b \) and \(b \leq f(e) \). Both cases \(0 \leq f'(e) \leq c(e) \).

- **Conservation constraint:** Let \(v \) be an internal node. Let \(e_1, e_2 \) be edges of \(P \) incident to \(v \). Four cases based on whether \(e_1, e_2 \) are forward or backward edges. Check cases (see fig next slide).
Properties about Augmentation: Conservation Constraint

\[G_f \]

\[G \]

Figure: Augmenting path \(P \) in \(G_f \) and corresponding change of flow in \(G \). Red edges are backward edges.

Properties about Augmentation: Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values \(f(e) \) and the residual capacities in \(G_f \) are integers.

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds for \(j \) iterations. Then in \((j + 1)\)st iteration, minimum capacity edge \(b \) is an integer, and so flow after augmentation is an integer.
Progress in Ford-Fulkerson

Proposition

Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$.

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph

- First edge e in P must leave s
- Original network G has no incoming edges to s; hence e is a forward edge
- P is simple and so never returns to s
- Thus, value of flow increases by the flow on edge e

Termination Proof

Theorem

Let C be the minimum cut value; in particular $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations $\leq C$
- Number of edges in $G_f \leq 2m$
- Time to find augmenting path is $O(n + m)$
- Running time is $O(C(n + m))$ (or $O(mC)$).
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.

Correctness of Ford-Fulkerson Augmenting Path Algorithm

Question: When the algorithm terminates, is the flow computed the maximum s-t flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!
Recalling Cuts

Definition
Given a flow network an \(s-t \) cut is a set of edges \(E' \subseteq E \) such that removing \(E' \) disconnects \(s \) from \(t \): in other words there is no directed \(s \to t \) path in \(E - E' \). Capacity of cut \(E' \) is \(\sum_{e \in E'} c(e) \).

Let \(A \subseteq V \) such that
- \(s \in A, t \notin A \)
- \(B = V - A \) and hence \(t \in B \)
Define \((A, B) = \{(u, v) \in E \mid u \in A, v \in B\} \)

Claim
\((A, B) \) is an s-t cut.

Recall: Every minimal s-t cut \(E' \) is a cut of the form \((A, B) \).

Ford-Fulkerson Correctness

Lemma
If there is no s-t path in \(G_f \) then there is some cut \((A, B) \) such that \(v(f) = c(A, B) \)

Proof.
Let \(A \) be all vertices reachable from \(s \) in \(G_f \); \(B = V \setminus A \)
- \(s \in A \) and \(t \in B \). So \((A, B) \) is an s-t cut in \(G \)
- If \(e = (u, v) \in G \) with \(u \in A \) and \(v \in B \), then \(f(e) = c(e) \) (saturated edge) because otherwise \(v \) is reachable from \(s \) in \(G_f \)
Lemma Proof Continued

Proof.

- If \(e = (u', v') \in G \) with \(u' \in B \) and \(v' \in A \), then \(f(e) = 0 \) because otherwise \(u' \) is reachable from \(s \) in \(G_f \).

Thus,

\[
\begin{align*}
\nu(f) &= f^{\text{out}}(A) - f^{\text{in}}(A) \\
&= f^{\text{out}}(A) - 0 \\
&= c(A, B) - 0 \\
&= c(A, B)
\end{align*}
\]

Example

- Flow \(f \)
- Residual graph \(G_f \): no \(s \)-\(t \) path
- \(A \) is reachable set from \(s \) in \(G_f \)
Ford-Fulkerson Correctness

Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \leq c(A, B)$
- For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-T cut (A^*, B^*)
- Hence, f^* is maximum

Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network G, the value of a maximum s-t flow is equal to the capacity of the minimum s-t cut.

Proof.

Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.
Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network \(G \) with integer capacities, there is a maximum \(s-t \) flow that is integer valued.

Proof.

Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.

Efficiency of Ford-Fulkerson

Running time \(= \mathcal{O}(mC) \) is not polynomial. Can the upper bound be achieved?
Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.

Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.

- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity
 - Remove all edges with residual capacity $\leq \Delta$
 - Check if there is a path from s to t
 - Do binary search to find largest Δ
 - Running time: $O(m \log C)$

- Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.
Augmenting Paths with Large Bottleneck Capacity

How do we find path with largest bottleneck capacity?

- Max bottleneck capacity is one of the edge capacities. Why?
- Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
- Algorithm’s running time is $O(m \log m)$.
- Different algorithm that also leads to $O(m \log m)$ time algorithm by adapting Prim’s algorithm.

Removing Dependence on C

- [Edmonds-Karp, Dinitz] Picking augmenting paths with fewest number of edges yields a $O(m^2n)$ algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use BFS to find an s-t path).
- Further improvements can yield algorithms running in $O(mn \log n)$, or $O(n^3)$.
Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?
Proof gives the algorithm!

- Compute an s-t maximum flow f in G
- Obtain the residual graph G_f
- Find the nodes A reachable from s in G_f
- Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. **Note:** The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?