Chapter 16

Network Flows

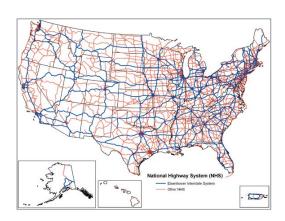
CS 473: Fundamental Algorithms, Spring 2011 March 17, 2011

16.0.0.1 Everything flows

Panta rei – everything flows (literally). Heraclitus (535–475 BC)

16.1 Network Flows: Introduction and Setup

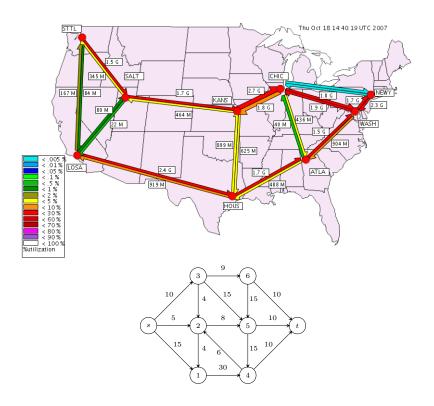
16.1.0.2 Transportation/Road Network



16.1.0.3 Internet Backbone Network

16.1.0.4 Common Features of Flow Networks

- Network represented by a (directed) graph G = (V, E)
- Each edge e has a capacity $c(e) \ge 0$ that limits amount of traffic on e



- Source(s) of traffic/data
- Sink(s) of traffic/data
- Traffic *flows* from sources to sinks
- Traffic is *switched/interchanged* at nodes

Flow: abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

16.1.0.5 Single Source Single Sink Flows

Simple setting:

- \bullet single source s and single sink t
- \bullet every other node v is an *internal* node
- \bullet flow originates at s and terminates at t
- Each edge e has a capacity $c(e) \ge 0$
- Some times it is convenient to assume that source $s \in V$ has no incoming edges and sink $t \in V$ has no outgoing edges

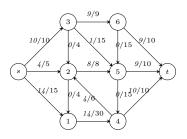


Figure 16.1: Flow with value

Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

16.1.0.6 Definition of Flow

Two ways to define flows:

- edge based
- path based

They are essentially equivalent but have different uses.

Edge based definition is more compact.

16.1.0.7 Edge Based Definition of Flow

Definition 16.1.1 A flow in a network G = (V, E), is a function $f : E \to \mathbb{R}^{\geq 0}$ such that

- Capacity Constraint: For each edge $e, f(e) \leq c(e)$
- ullet Conservation Constraint: For each vertex $v \neq s, t$

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

• Value of flow: (total flow out of source) — (total flow in to source)

16.1.0.8 Flow...

Conservation of flow law is also known as **Kirchhoff's law**.

16.1.0.9 More Definitions and Notation

Notation

- The inflow into a vertex v is $f^{\text{in}}(v) = \sum_{e \text{ into } v} f(e)$ and the outflow is $f^{\text{out}}(v) = \sum_{e \text{ out of } v} f(e)$
- For a set of vertices A, $f^{\text{in}}(A) = \sum_{e \text{ into } A} f(e)$. Outflow $f^{\text{out}}(A)$ is defined analogously

Definition 16.1.2 For a network G = (V, E) with source s, the value of flow f is defined as $v(f) = f^{\text{out}}(s) - f^{\text{in}}(s)$

16.1.0.10 A Path Based Definition of Flow

Intuition: flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition 16.1.3 A flow in a network G = (V, E), is a function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ such that

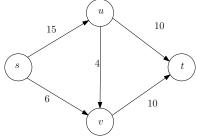
• Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$\sum_{p \in \mathcal{P}: e \in p} f(p) \le c(e)$$

• Conservation Constraint: No need! Automatic.

Value of flow: $\sum_{p \in \mathcal{P}} f(p)$

16.1.0.11 Example



$$\mathcal{P} = \{p_1, p_2, p_3\}$$

 $p_1: s \to u \to t$

 $p_2: s \to u \to v \to t$

 $p_3: s \to v \to t$

 $f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$

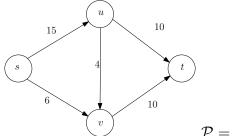
16.1.0.12Path based flow implies Edge based flow

Lemma 16.1.4 Given a path based flow $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $f': E \to \mathbb{R}^{\geq 0}$ $\mathbb{R}^{\geq 0}$ of the same value.

Proof: For each edge e define $f'(e) = \sum_{p:e \in p} f(p)$. **Exercise:** verify capacity and conservation constraints for f'.

Exercise: verify that value of f and f' are equal

16.1.0.13 Example



$$\mathcal{P} = \{p_1, p_2, p_3\}$$

 $p_1: s \to u \to t$

 $p_2: s \to u \to v \to t$

 $p_3: s \to v \to t$

 $f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$

$$f'((s,u)) = 14$$

f'((u,v)) = 4

$$f'((s,v)) = 6$$

$$f'((u,t)) = 10$$

$$f'((v,t)) = 10$$

Flow Decomposition 16.1.1

16.1.1.1 Edge based flow to Path based Flow

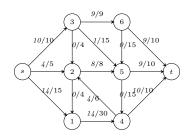
Lemma 16.1.5 Given an edge based flow $f': E \to \mathbb{R}^{\geq 0}$, there is a path based flow $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$ $\mathbb{R}^{\geq 0}$ of same value. Moreover, f assigns non-negative flow to at most m paths where |E|=mand |V| = n. Given f', the path based flow can be computed in O(mn) time.

16.1.2Flow Decomposition

16.1.2.1 Edge based flow to Path based Flow

Proof:[Proof Idea]

• remove all edges with f'(e) = 0



- find a path p from s to t
- assign f(p) to be $\min_{e \in p} f'(e)$
- reduce f'(e) for all $e \in p$ by f(p)
- \bullet repeat until no path from s to t
- in each iteration at least on edge has flow reduced to zero; hence at most m iterations. Can be implemented in O(m(m+n)) time. O(mn) time requires care.

16.1.2.2 Example

16.1.2.3 Edge vs Path based Definitions of Flow

Edge based flows:

- compact representation, only m values to be specified
- need to check flow conservation explicitly at each internal node

Path flows:

- in some applications, paths more natural
- not compact
- no need to check flow conservation constraints

Equivalence shows that we can go back and forth easily.

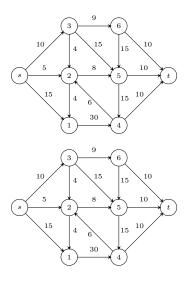
16.1.2.4 The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t

Goal Find flow of maximum value

Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?



16.1.2.5 Cuts

Definition 16.1.6 Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. The capacity of a cut E' is $\sum_{e \in E'} c(e)$.

Caution: cut may leave $t \to s$ paths!

16.1.2.6 Minimal Cut

Definition 16.1.7 Given a flow network an s-t, E' is a minimal cut if for all $e \in E'$, $E' - \{e\}$ is not a cut.

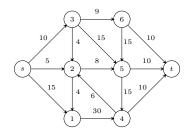
Observation: given a cut E', can check efficiently whether E' is a minimal cut or not. How?

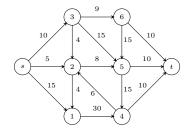
16.1.2.7 Cuts as Vertex Partitions

Let $A \subset V$ such that

- $s \in A, t \notin A$
- B = V A and hence $t \in B$

Define $cut(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}$: edges leaving A





Claim 16.1.8 (A, B) is an s-t cut.

Proof: Let P be any $s \to t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

16.1.2.8 Cuts as Vertex Partitions

Lemma 16.1.9 Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof: E' is an s-t cut implies no path from s to t in (V, E - E').

- Let A be set of all nodes reachable by s in (V, E E').
- Since E' is a cut, $t \notin A$.
- $(A, B) \subseteq E'$. Why? If some edge $(u, v) \in (A, B)$ is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary 16.1.10 Every minimal s-t cut E' is a cut of the form (A, B).

16.1.2.9 Minimum Cut

Definition 16.1.11 Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.

Observation: exponential number of s-t cuts and no "easy" algorithm to find a minimum cut.

16.1.2.10 The Minimum-Cut Problem

Problem

Input A flow network G

Goal Find the capacity of a minimum s-t cut

8