Chapter 15

Hashing

15.1 Hash Tables

15.2 Introduction

15.2.0.1 Dictionary Data Structure

- A universe U of keys that have a total order: numbers, strings, etc.
- Data structure to store a subset $S \subseteq U$
- Operations:
 - Search/lookup: given $x \in U$ is $x \in S$?
 - Insert: given $x \notin S$ add x to S.
 - Delete: given $x \in S$ delete x from S

- **Static** structure: S given in advance or changes very infrequently, main operations are lookups.

- **Dynamic** structure: S changes rapidly so inserts and deletes as important as lookups.

15.2.0.2 Dictionary Data Structures

Common solutions:

- Static:
 - Store S as a sorted array
- Lookup: binary search in $O(\log |S|)$ time (comparisons)

- Dynamic:
 - Store S in a balanced binary search tree
 - Lookup, Insert, Delete in $O(\log |S|)$ time (comparisons)

15.2.0.3 Dictionary Data Structures

Question: “Should Tables be Sorted?”
(also title of famous paper by Turing award winner Andy Yao)

Hashing is a widely used & powerful technique for dictionaries.

Motivation:

- Universe U may not be (naturally) totally ordered

- Keys correspond to large objects (images, graphs etc) for which comparisons are very expensive

- Want to improve “average” performance of lookups to $O(1)$ even at cost of extra space or errors with small probability: many applications for fast lookups in networking, security, etc.

15.2.0.4 Hashing and Hash Tables

Hash Table data structure:

- A (hash) table/array T of size m (the table size)

- A hash function $h : U \rightarrow \{0, \ldots, m-1\}$

- Item $x \in U$ hashes to slot $h(x)$ in T

Given $S \subseteq U$. How do we store S and how do we do lookups?

Ideal situation:

- Each element $x \in S$ hashes to a distinct slot in T. Store x in slot $h(x)$

- Lookup: given $y \in U$ check if $T[h(y)] = y$. $O(1)$ time!

Collisions unavoidable. Several different techniques to handle them.
15.2.0.5 Handling Collisions: Chaining

Collision: \(h(x) = h(y) \) for some \(x \neq y \).

Chaining to handle collisions:

- For each slot \(i \) store all items hashed to slot \(i \) in a linked list. \(T[i] \) points to the linked list.

- Lookup: to find if \(y \in U \) is in \(T \), check the linked list at \(T[h(y)] \). Time proportion to size of linked list.

15.2.0.6 Handling Collisions

Several other techniques:

- Open addressing
- ...
- Cuckoo hashing

15.2.0.7 Understanding Hashing

Does hashing give \(O(1) \) time per operation for dictionaries?

Questions:

- Complexity of evaluating \(h \) on a given element?
- Relative sizes of the universe \(U \) and the set to be stored \(S \).
- Size of table relative to size of \(S \).
- Worst-case vs average-case vs randomized (expected) time?
- How do we choose \(h \)?
15.2.0.8 Understanding Hashing

- Complexity of evaluating h on a given element? Should be small.
- Relative sizes of the universe \mathcal{U} and the set to be stored S: typically $|\mathcal{U}| \gg |S|$.
- Size of table relative to size of S. The load factor of T is the ratio n/t where $n = |S|$ and $m = |T|$. Typically n/t is a small constant smaller than 1. Also known as the fill factor.

Main and interrelated questions:
- Worst-case vs average-case vs randomized (expected) time?
- How do we choose h?

15.2.0.9 Single hash function

- \mathcal{U}: universe (very large).
- Assume $N = |\mathcal{U}| \gg m$ where m is size of table T. In particular assume $N \geq m^2$ (very conservative).
- Fix hash function $h : \mathcal{U} \to \{0, \ldots , m - 1\}$.
- N items hashed to m slots. By pigeon hole principle there is some $i \in \{0, \ldots , m - 1\}$ such that $N/m \geq m$ elements of \mathcal{U} get hashed to i!
- Implies that there is a set $S \subseteq \mathcal{U}$ where $|S| = m$ such that all of S hashes to same slot!

Lesson: For every hash function there is a very bad set!

15.2.0.10 Picking a hash function

- Hash function are often chosen in an ad hoc fashion. Implicit assumption is that input behaves well.
- Theory and sound practice suggests that a hash function should be chosen properly with guarantees on its behavior.

Parameters: $N = |\mathcal{U}|$, $m = |T|$, $n = |S|$
- \mathcal{H} is a family of hash functions: each function $h \in \mathcal{H}$ should be efficient to evaluate (that is, to compute $h(x)$)
- h is chosen randomly from \mathcal{H} (typically uniformly at random). Implicitly assumes that \mathcal{H} allows an efficient sampling.
- Randomized guarantee: should have the property that for any fixed set $S \subseteq \mathcal{U}$ of size m the expected number of collisions for a function chosen from \mathcal{H} should be “small”. Here the expectation is over the randomness in choice of h.

4
15.2.0.11 Picking a hash function

Question: Why not let \(\mathcal{H} \) be the set of all functions from \(\mathcal{U} \) to \(\{0, 1, \ldots, m - 1\} \)?

- Too many functions! A random function has high complexity!

Question: Are there good and compact families \(\mathcal{H} \)?

- Yes... But what it means for \(\mathcal{H} \) to be good and compact.

15.3 Universal Hashing

15.3.0.12 Uniform hashing

Question: What are good properties of \(\mathcal{H} \) in distributing data?

- Consider any element \(x \in \mathcal{U} \). Then if \(h \in \mathcal{H} \) is picked randomly then \(x \) should go into a random slot in \(T \). In other words \(\Pr[h(x) = i] = 1/m \) for every \(0 \leq i < m \).

- Consider any two distinct elements \(x, y \in \mathcal{U} \). Then if \(h \in \mathcal{H} \) is picked randomly then the probability of a collision between \(x \) and \(y \) should be at most \(1/m \). In other words \(\Pr[h(x) = h(y)] = 1/m \) (cannot be smaller).

- Second property is stronger than the first and the crucial issue.

Definition 15.3.1 A family hash function \(\mathcal{H} \) is 2-universal if for all distinct \(x, y \in \mathcal{U} \), \(\Pr[h(x) = h(y)] = 1/m \) where \(m \) is the table size.

Note: The set of all hash functions satisfies stronger properties!

15.3.0.13 Analyzing Uniform Hashing

- \(T \) is hash table of size \(m \).

- \(S \subseteq \mathcal{U} \) is a fixed set of size \(m \).

- \(h \) is chosen randomly from a uniform hash family \(\mathcal{H} \).

- \(x \) is a fixed element of \(\mathcal{U} \). Assume for simplicity that \(x \notin S \).

Question: What is the expected time to look up \(x \) in \(T \) using \(h \) assuming chaining used to resolve collisions?
15.3.0.14 Analyzing Uniform Hashing

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

- The time to look up x is the size of the list at $T[h(x)]$: same as the number of elements in S that collide with x under h.

- Let $\ell(x)$ be this number. We want $E[\ell(x)]$.

- For $y \in S$ let A_y be the even that x, y collide and D_y be the corresponding indicator variable.

15.3.1 Analyzing Uniform Hashing

15.3.1.1 Continued...

$$\ell(x) = \sum_{y \in S} D_y$$

$$\Rightarrow E[\ell(x)] = \sum_{y \in S} E[D_y] \text{ linearity of expectation}$$

$$= \sum_{y \in S} Pr[h(x) = h(y)]$$

$$= \sum_{y \in S} \frac{1}{m} \text{ since } \mathcal{H} \text{ is a uniform hash family}$$

$$= \frac{|S|}{m} \leq 1$$

15.3.1.2 Analyzing Uniform Hashing

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

Answer: $O(1)$!

Comments:

- $O(1)$ expected time also holds for insertion.

- Analysis assumes static set S but holds as long as S is a set formed with at most $O(m)$ insertions and deletions.

- *Worst-case* look up time can be large! How large? $\Omega(\log n/ \log \log n)$.
15.3.2 Rehashing, amortization and...

15.3.2.1 ... making the hash table dynamic

Previous analysis assumed fixed S of size $\approx m$.

Question: What happens as items are inserted and deleted?

- If $|S|$ grows to more than cm for some constant c then hash table performance clearly degrades
- If $|S|$ stays around $\approx m$ but incurs many insertions and deletions then the initial random hash function is no longer random enough!

Solution: Rebuild hash table periodically!

- Choose a new table size based on current number of elements in table.
- Choose a new random hash function and rehash the elements.
- Discard old table and hash function.

Question: When to rebuild? How expensive?

15.3.2.2 Rebuilding the hash table

- Start with table size m where m is some estimate of $|S|$ (can be some large constant).
- If $|S|$ grows to more than twice current table size, build new hash table (choose a new random hash function) with double the current number of elements. Can also use similar trick if table size falls below quarter the size.
- If $|S|$ stays roughly the same but more than $c|S|$ operations on table for some chosen constant c (say 10), rebuild.

Amortize cost of rebuilding to previously performed operations. Rebuilding ensures $O(1)$ expected analysis holds even when S changes. Hence $O(1)$ expected look up/insert/delete time *dynamic* data dictionary data structure!

15.3.2.3 Some math required...

Lemma 15.3.2 Let p be a prime number,

x: an integer number in $\{1, \ldots, p - 1\}$.

\implies There exists a unique y s.t. $xy = 1 \mod p$.

In other words: For every element there is a unique inverse.

\implies $\mathbb{Z}_p = \{0, 1, \ldots, p - 1\}$ when working modulo p is a field.
15.3.2.4 Proof of lemma

Claim 15.3.3 Let p be a prime number. For any $\alpha, \beta, i \in \{1, \ldots, p - 1\}$ s.t. $\alpha \neq \beta$, we have that $\alpha i \neq \beta i \mod p$.

Proof: Assume for the sake of contradiction $\alpha i = \beta i \mod p$. Then

\[i(\alpha - \beta) = 0 \mod p \]
\[\implies p \text{ divides } i(\alpha - \beta) \]
\[\implies p \text{ divides } \alpha - \beta \]
\[\implies \alpha - \beta = 0 \]
\[\implies \alpha = \beta. \]

And that is a contradiction. ■

15.3.3 Proof of lemma...

15.3.3.1 Uniqueness.

Proof: Follows immediately from the above claim. Indeed, assume the claim is false and there are two distinct numbers $y, z \in \{1, \ldots, p - 1\}$ such that

\[xy = 1 \mod p \text{ and } xz = 1 \mod p. \]

But this contradicts the above claim (set $i = x$, $\alpha = y$ and $\beta = z$). ■

15.3.4 Proof of lemma...

15.3.4.1 Existence

Proof: By claim, for any $\alpha \in \{1, \ldots, p - 1\}$ we have that $\{\alpha \ast 1 \mod p, \alpha \ast 2 \mod p, \ldots, \alpha \ast (p - 1) \mod \{1, 2, \ldots, p - 1\}$.

\[\implies \text{There exists a number } y \in \{1, \ldots, p - 1\} \text{ such that } \alpha y = 1 \mod p. \]

15.3.4.2 Constructing Universal Hash Families

Parameters: $N = |U|, m = |T|, n = |S|$

- Choose a **prime** number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \ldots, p - 1\}$ is a field.
- For $a, b \in \mathbb{Z}_p, a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- Let $\mathcal{H} = \{h_{a,b} | a, b \in \mathbb{Z}_p, a \neq 0\}$ Note that $|\mathcal{H}| = p(p - 1)$.

Theorem 15.3.4 \mathcal{H} is a 2-universal hash family.
Comments:

- Hash family is of small size, easy to sample from.
- Easy to store a hash function \((a, b)\) have to be stored) and evaluate it.

15.3.4.3 Constructing Universal Hash Families

Theorem 15.3.5 \(\mathcal{H}\) is a \((2)\)-universal hash family.

Proof: Fix \(x, y \in \mathcal{U}\). What is the probability they will collide if \(h\) is picked randomly from \(\mathcal{H}\)?

- Let \(a, b\) be bad for \(x, y\) if \(h_{a,b}(x) = h_{a,b}(y)\)
- **Claim**: Number of bad pairs is at most \(p(p - 1)/m\).
- Total number of hash functions is \(p(p - 1)\) and hence probability of a collision is \(\leq 1/m\).

15.3.4.4 Some Lemmas

Lemma 15.3.6 If \(x \neq y\) then for any \(a, b \in \mathbb{Z}_p\) such that \(a \neq 0\), \(ax + b \mod p \neq ay + b \mod p\).

Proof: If \(ax + b \mod p = ay + b \mod p\) then \(a(x - y) \mod p = 0\) and \(a \neq 0\) and \((x - y) \neq 0\). However, \(a\) and \((x - y)\) cannot divide \(p\) since \(p\) is prime and \(a < p\) and \((x - y) < p\).

15.3.4.5 Some Lemmas

Lemma 15.3.7 If \(x \neq y\) then for each \((r, s)\) such that \(r \neq s\) and \(0 \leq r, s \leq p - 1\) there is exactly one \(a, b\) such that \(ax + b \mod p = r\) and \(ay + b \mod p = s\).

Proof: Solve the two equations:

\[
ax + b = r \mod p \quad \text{and} \quad ay + b = s \mod p
\]

We get \(a = \frac{r-s}{x-y} \mod p\) and \(b = r - ax \mod p\).

15.3.4.6 Proof of Claim

Proof: Let \(a, b \in \mathbb{Z}_p\) such that \(a \neq 0\) and \(h_{a,b}(x) = h_{a,b}(y)\).

- Let \(ax + b \mod p = r\) and \(ay + b \mod p = s \mod p\).
- Collision if and only if \(r = s \mod m\).