CS 473: Fundamental Algorithms, Spring 2011

Introduction to Randomized Algorithms: QuickSort and QuickSelect

Lecture 13 March 8, 2011

Part I

Introduction to Randomized Algorithms

Sariel (UIUC) CS473 2 Spring 2011 2 / 42

Randomized Algorithms

Sariel (UIUC) CS473 3 Spring 2011 3 / 42

Randomized Algorithms

Sariel (UIUC) CS473 3 Spring 2011 3 / 42

Example: Randomized QuickSort

QuickSort [Hoare, 1962]

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Randomized QuickSort

- Pick a pivot element uniformly at random from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 めらび

Spring 2011

Example: Randomized Quicksort

Recall: QuickSort can take $\Omega(n^2)$ time to sort array of size n.

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Note: On every input randomized QuickSort takes $O(n \log n)$ time in expectation. On every input it may take $\Omega(n^2)$ time with some small probability.

Sariel (UIUC) CS473 5 Spring 2011 5 / 42

Example: Randomized Quicksort

Recall: QuickSort can take $\Omega(n^2)$ time to sort array of size n.

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Note: On every input randomized QuickSort takes $O(n \log n)$ time in expectation. On every input it may take $\Omega(n^2)$ time with some small probability.

Sariel (UIUC) CS473 5 Spring 2011 5 / 42

Example: Randomized Quicksort

Recall: QuickSort can take $\Omega(n^2)$ time to sort array of size n.

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Note: On *every* input randomized QuickSort takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Sariel (UIUC) CS473 5 Spring 2011 5 / 42

Problem

Given three $\mathbf{n} \times \mathbf{n}$ matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$ is $\mathbf{AB} = \mathbf{C}$?

Deterministic algorithm:

- Multiply A and B and check if equal to C.
- Running time? $O(n^3)$ by straight forward approach. $O(n^{2.37})$ with fast matrix multiplication (complicated and impractical).

Sariel (UIUC) CS473 6 Spring 2011 6 / 42

Problem

Given three $\mathbf{n} \times \mathbf{n}$ matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$ is $\mathbf{AB} = \mathbf{C}$?

Deterministic algorithm:

- Multiply A and B and check if equal to C.
- Running time? $O(n^3)$ by straight forward approach. $O(n^{2.37})$ with fast matrix multiplication (complicated and impractical).

Sariel (UIUC) CS473 6 Spring 2011 6 / 42

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Deterministic algorithm:

- Multiply A and B and check if equal to C.
- Running time? $O(n^3)$ by straight forward approach. $O(n^{2.37})$ with fast matrix multiplication (complicated and impractical).

Sariel (UIUC) CS473 6 Spring 2011 6 / 42

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- Return the answer of the equality ABr = Cr.
- Running time? $O(n^2)!$

Theorem

If AB = C then the algorithm will always say YES. If $AB \neq C$ then the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1/2^{100}$.

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- Return the answer of the equality ABr = Cr.
- Running time? $O(n^2)!$

Theorem

If AB = C then the algorithm will always say YES. If $AB \neq C$ then the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1/2^{100}$.

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- Return the answer of the equality ABr = Cr.
- Running time? $O(n^2)!$

Theorem

If AB = C then the algorithm will always say YES. If $AB \neq C$ then the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1/2^{100}$.

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- Return the answer of the equality ABr = Cr.
- Running time? $O(n^2)!$

Theorem

If AB = C then the algorithm will always say YES. If $AB \neq C$ then the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1/2^{100}$.

Why randomized algorithms?

- Many many applications in algorithms, data structures and computer science!
- In some cases only known algorithms are randomized or randomness is provably necessary.
- Often randomized algorithms are (much) simpler and/or more efficient.
- Several deep connections to mathematics, physics etc.
- . . .
- Lots of fun!

Where do I get random bits?

Question: Are true random bits available in practice?

- Buy them!
- CPUs use physical phenomena to generate random bits.
- Can use pseudo-random bits or semi-random bits from nature.
 Several fundamental unresolved questions in complexity theory on this topic. Beyond the scope of this course.
- In practice pseudo-random generators work quite well in many applications.
- The model is interesting to think in the abstract and is very useful even as a theoretical construct. One can *derandomize* randomized algorithms to obtain deterministic algorithms.

Sariel (UIUC) CS473 9 Spring 2011 9 / 43

Average case analysis vs Randomized algorithms

Average case analysis:

- Fix a deterministic algorithm.
- Assume inputs comes from a probability distribution.
- Analyze the algorithm's *average* performance over the distribution over inputs.

Randomized algorithms:

- Algorithm uses random bits in addition to input.
- Analyze algorithms average performance over the given input where the average is over the random bits that the algorithm uses.
- On each input behaviour of algorithm is random. Analyze worst-case over all inputs of the (average) performance.

Sariel (UIUC) CS473 10 Spring 2011 10 / 42

Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair (Ω, Pr) consists of finite set Ω of elementary events and function $p:\Omega\to [0,1]$ which assigns a probability $Pr[\omega]$ for each $\omega\in\Omega$ such that $\sum_{\omega\in\Omega} Pr[\omega]=1$.

Example

An unbiased coin. $\Omega = \{H, T\}$ and Pr[H] = Pr[T] = 1/2

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and Pr[i]=1/6 for $1\leq i\leq 6.$

Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair (Ω, Pr) consists of finite set Ω of *elementary* events and function $p:\Omega \to [0,1]$ which assigns a probability $Pr[\omega]$ for each $\omega \in \Omega$ such that $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

Example

An unbiased coin. $\Omega = \{H, T\}$ and Pr[H] = Pr[T] = 1/2.

Example

A 6-sided unbiased die. $\Omega = \{1,2,3,4,5,6\}$ and Pr[i] = 1/6 for $1 \leq i \leq 6.$

Sariel (UIUC) CS473 11 Spring 2011 11 / 42

Discrete Probability

And more examples

Example

A biased coin. $\Omega = \{H, T\}$ and Pr[H] = 2/3, Pr[T] = 1/3.

Example

Two independent unbiased coins. $\Omega = \{HH, TT, HT, TH\}$ and Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

Example

A pair of (highly) correlated dice.

$$\Omega = \{(i,j) \mid 1 \le i \le 6, 1 \le j \le 6\}.$$

$$Pr[i, i] = 1/6$$
 for $1 \le i \le 6$ and $Pr[i, j] = 0$ if $i \ne j$.

Sariel (UIUC) CS473 12 Spring 2011 12 / 42

Events

Definition

Given a probability space (Ω, \Pr) an **event** is a subset of Ω . In other words an event is a collection of elementary events. The probability of an event A, denoted by $\Pr[A]$, is $\sum_{\omega \in A} \Pr[\omega]$. The complement of an event $A \subseteq \Omega$ is the event $\Omega \setminus A$ frequently denoted by \bar{A} .

Sariel (UIUC) CS473 13 Spring 2011 13 / 42

Example

A pair of independent dice. $\Omega = \{(i,j) \mid 1 \le i \le 6, 1 \le j \le 6\}.$

- Let **A** be the event that the sum of the two numbers on the dice is even. Then $\mathbf{A} = \{(\mathbf{i}, \mathbf{j}) \in \Omega \mid (\mathbf{i} + \mathbf{j}) \text{ is even}\}.$ $\Pr[\mathbf{A}] = |\mathbf{A}|/36 = 1/2.$
- Let B be the event that the first die has 1. Then $B = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)\}$. Pr[B] = 6/36 = 1/6.

Sariel (UIUC) CS473 14 Spring 2011 14

Independent Events

Definition

Given a probability space (Ω, Pr) and two events A, B are **independent** if and only if $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are *dependent*. In other words A, B independent implies one does not affect the other.

Example

Two coins.
$$\Omega = \{HH, TT, HT, TH\}$$
 and $Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4$.

- A is the event that the first coin is heads and B is the event that second coin is tails. A, B are independent.
- A is the event that the two coins are different. B is the event that the second coin is heads. A, B independent.

Sariel (UIUC) CS473 15 Spring 2011 15 / 42

Independent Events

Definition

Given a probability space (Ω, Pr) and two events A, B are **independent** if and only if $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are *dependent*. In other words A, B independent implies one does not affect the other.

Example

Two coins.
$$\Omega = \{HH, TT, HT, TH\}$$
 and $Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4$.

- A is the event that the first coin is heads and B is the event that second coin is tails. A, B are independent.
- A is the event that the two coins are different. B is the event that the second coin is heads. A, B independent.

Sariel (UIUC) CS473 15 Spring 2011 15 / 42

Independent Events

Examples

Example

A is the event that both are not tails and **B** is event that second coin is heads. **A**, **B** are dependent.

Random Variables

Definition

Given a probability space (Ω, Pr) a (real-valued) random variable X over Ω is a function that maps each elementary event to a real number. In other words $X: \Omega \to \mathbb{R}$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and Pr[i]=1/6 for $1\leq i\leq 6$.

- $X : \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$.
- $Y : \Omega \to \mathbb{R}$ where $Y(i) = i^2$.

Definition

A binary random variable is one that takes on values in $\{0,1\}$.

Random Variables

Definition

Given a probability space (Ω, Pr) a (real-valued) random variable X over Ω is a function that maps each elementary event to a real number. In other words $X: \Omega \to \mathbb{R}$.

Example

A 6-sided unbiased die. $\Omega = \{1,2,3,4,5,6\}$ and Pr[i] = 1/6 for $1 \leq i \leq 6.$

- $X : \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$.
- $Y : \Omega \to \mathbb{R}$ where $Y(i) = i^2$.

Definition

A **binary random variable** is one that takes on values in $\{0,1\}$

Random Variables

Definition

Given a probability space (Ω, Pr) a (real-valued) random variable X over Ω is a function that maps each elementary event to a real number. In other words $X: \Omega \to \mathbb{R}$.

Example

A 6-sided unbiased die. $\Omega = \{1,2,3,4,5,6\}$ and Pr[i] = 1/6 for $1 \leq i \leq 6.$

- $X : \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$.
- $Y : \Omega \to \mathbb{R}$ where $Y(i) = i^2$.

Definition

A binary random variable is one that takes on values in $\{0,1\}$.

Sariel (UIUC) CS473 17 Spring 2011 17 / 42

Indicator Random Variables

Special type of random variables that are quite useful.

Definition

Given a probability space (Ω, Pr) and an event $A \subseteq \Omega$ the indicator random variable X_A is a binary random variable where $X_A(\omega) = 1$ if $\omega \in A$ and $X_A(\omega) = 0$ if $\omega \notin A$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and Pr[i]=1/6 for $1\leq i\leq 6$. Let **A** be the even that **i** is divisible by **3**. Then $X_A(i)=1$ if i=3,6 and **0** otherwise.

Sariel (UIUC) CS473 18 Spring 2011 18 / 42

Indicator Random Variables

Special type of random variables that are quite useful.

Definition

Given a probability space (Ω, Pr) and an event $A \subseteq \Omega$ the indicator random variable X_A is a binary random variable where $X_A(\omega) = 1$ if $\omega \in A$ and $X_A(\omega) = 0$ if $\omega \not\in A$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and Pr[i]=1/6 for $1\leq i\leq 6$. Let **A** be the even that **i** is divisible by **3**. Then $X_A(i)=1$ if i=3,6 and **0** otherwise.

Sariel (UIUC) CS473 18 Spring 2011 18 / 42

Expectation

Definition

For a random variable **X** over a probability space (Ω, Pr) the **expectation** of **X** is defined as $\sum_{\omega \in \Omega} Pr[\omega] X(\omega)$. In other words, the expectation is the average value of **X** according to the probabilities given by $Pr[\cdot]$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and Pr[i]=1/6 for $1\leq i\leq 6.$

- $X : \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$. Then E[X] = 1/2.
- $\mathbf{Y}:\Omega\to\mathbb{R}$ where $\mathbf{Y}(\mathbf{i})=\mathbf{i}^2$. Then $\mathbf{E}[\mathbf{Y}]=\sum_{i=1}^6\frac{1}{6}\cdot\mathbf{i}^2=91/6$.

4 D > 4 D > 4 E > 4 E > E 990

Expectation

Definition

For a random variable **X** over a probability space (Ω, Pr) the **expectation** of **X** is defined as $\sum_{\omega \in \Omega} Pr[\omega] X(\omega)$. In other words, the expectation is the average value of **X** according to the probabilities given by $Pr[\cdot]$.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and Pr[i]=1/6 for $1\leq i\leq 6$.

- $X : \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$. Then E[X] = 1/2.
- $\mathbf{Y}: \Omega \to \mathbb{R}$ where $\mathbf{Y}(\mathbf{i}) = \mathbf{i}^2$. Then $\mathbf{E}[\mathbf{Y}] = \sum_{i=1}^6 \frac{1}{6} \cdot \mathbf{i}^2 = 91/6$.

4 D > 4 D > 4 E > 4 E > E 990

Expectation

Proposition

For an indicator variable X_A , $E[X_A] = Pr[A]$.

Proof.

$$\begin{split} \text{E}[\textbf{X}_{\textbf{A}}] &= \sum_{\textbf{y} \in \Omega} \textbf{X}_{\textbf{A}}(\textbf{y}) \, \text{Pr}[\textbf{y}] \\ &= \sum_{\textbf{y} \in \textbf{A}} \textbf{1} \cdot \text{Pr}[\textbf{y}] + \sum_{\textbf{y} \in \Omega \setminus \textbf{A}} \textbf{0} \cdot \text{Pr}[\textbf{y}] \\ &= \sum_{\textbf{y} \in \textbf{A}} \text{Pr}[\textbf{y}] \\ &= \text{Pr}[\textbf{A}] \, . \end{split}$$

Linearity of Expectation

Lemma

Let X, Y be two random variables over a probability space (Ω, Pr) . Then E[X + Y] = E[X] + E[Y].

Proof.

$$\begin{split} \mathbf{E}[\mathbf{X} + \mathbf{Y}] &= \sum_{\omega \in \Omega} \Pr[\omega] \left(\mathbf{X}(\omega) + \mathbf{Y}(\omega) \right) \\ &= \sum_{\omega \in \Omega} \Pr[\omega] \mathbf{X}(\omega) + \sum_{\omega \in \Omega} \Pr[\omega] \mathbf{Y}(\omega) = \mathbf{E}[\mathbf{X}] + \mathbf{E}[\mathbf{Y}] \,. \end{split}$$

Corollary

$$E[a_1X_1 + a_2X_2 + \ldots + a_nX_n] = \sum_{i=1}^n a_i E[X_i].$$

Linearity of Expectation

Lemma

Let X, Y be two random variables over a probability space (Ω, Pr) . Then E[X + Y] = E[X] + E[Y].

Proof.

$$\begin{split} \mathsf{E}[\mathsf{X} + \mathsf{Y}] &= \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \left(\mathsf{X}(\omega) + \mathsf{Y}(\omega) \right) \\ &= \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \, \mathsf{X}(\omega) + \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \, \mathsf{Y}(\omega) = \mathsf{E}[\mathsf{X}] + \mathsf{E}[\mathsf{Y}] \, . \end{split}$$

Corollary

$$\textstyle \textbf{E}[a_1\textbf{X}_1 + a_2\textbf{X}_2 + \ldots + a_n\textbf{X}_n] = \sum_{i=1}^n a_i\,\textbf{E}[\textbf{X}_i].$$

Sariel (UIUC) CS473 21 Spring 2011 21 / 42

Types of Randomized Algorithms

Typically one encounters the following types:

- Las Vegas randomized algorithms: for a given input x output of algorithm is always correct but the running time is a random variable. In this case we are interested in analyzing the expected running time.
- Monte Carlo randomized algorithms: for a given input x the running time is deterministic but the output is random; correct with some probability. In this case we are interested in analyzing the probability of the correct output (and also the running time).
- Algorithms whose running time and output may both be random.

Analyzing Las Vegas Algorithms

Deterministic algorithm \mathbf{Q} for a problem $\mathbf{\Pi}$:

- Let Q(x) be the time for Q to run on input x of length |x|.
- Worst-case analysis: run time on worst input for a given size n.

$$\mathsf{T}_{\mathsf{wc}}(\mathsf{n}) = \max_{\mathsf{x}: |\mathsf{x}| = \mathsf{n}} \mathsf{Q}(\mathsf{x}).$$

Randomized algorithm \mathbf{R} for a problem $\mathbf{\Pi}$:

- Let R(x) be the time for Q to run on input x of length |x|.
- \bullet R(x) is a random variable: depends on random bits used by R.
- E[R(x)] is the expected running time for R on x
- Worst-case analysis: expected time on worst input of size n

$$T_{rand-wc}(n) = \max_{x:|x|=n} E[Q(x)].$$

Analyzing Las Vegas Algorithms

Deterministic algorithm \mathbf{Q} for a problem $\mathbf{\Pi}$:

- Let Q(x) be the time for Q to run on input x of length |x|.
- Worst-case analysis: run time on worst input for a given size n.

$$\mathsf{T}_{\mathsf{wc}}(\mathsf{n}) = \max_{\mathsf{x}: |\mathsf{x}| = \mathsf{n}} \mathsf{Q}(\mathsf{x}).$$

Randomized algorithm \mathbf{R} for a problem $\mathbf{\Pi}$:

- Let R(x) be the time for Q to run on input x of length |x|.
- \bullet R(x) is a random variable: depends on random bits used by R.
- E[R(x)] is the expected running time for R on x
- ullet Worst-case analysis: expected time on worst input of size ullet

$$\mathsf{T}_{\mathsf{rand-wc}}(\mathsf{n}) = \max_{\mathsf{x}: |\mathsf{x}| = \mathsf{n}} \mathsf{E}[\mathsf{Q}(\mathsf{x})].$$

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π :

- Let M(x) be the time for M to run on input x of length |x|. For Monte Carlo, assumption is that run time is deterministic.
- Let Pr[x] be the probability that M is correct on x.
- Pr[x] is a random variable: depends on random bits used by M.
- Worst-case analysis: success probability on worst input

$$\mathsf{P}_{\mathsf{rand}-\mathsf{wc}}(\mathsf{n}) = \min_{\mathsf{x}: |\mathsf{x}| = \mathsf{n}} \mathsf{Pr}[\mathsf{x}] \,.$$

Part II

Randomized Quick Sort and Selection

Randomized QuickSort

Randomized QuickSort

- Pick a pivot element uniformly at random from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Example

• array: 16, 12, 14, 20, 5, 3, 18, 19, 1

- Given array A of size n let Q(A) be number of comparisons of randomized QuickSort on A.
- Note that **Q(A)** is a random variable
- \bullet Let $\textbf{A}_{\text{left}}^{\textbf{i}}$ and $\textbf{A}_{\text{right}}^{\textbf{i}}$ be the left and right arrays obtained if:

pivot is of rank i in A.

$$Q(A) = n + \sum_{i=1}^{n} Pr[pivot has rank i] \left(Q(A_{left}^{i}) + Q(A_{right}^{i})\right)$$

Since each element of $\bf A$ has probability exactly of 1/n of being chosen:

$$Q(A) = n + \sum_{i=1}^{n} \frac{1}{n} \left(Q(A_{left}^{i}) + Q(A_{right}^{i}) \right)$$

- Given array A of size n let Q(A) be number of comparisons of randomized QuickSort on A.
- Note that Q(A) is a random variable
- Let A_{left}^{i} and A_{right}^{i} be the left and right arrays obtained if:

pivot is of rank i in A.

$$Q(A) = n + \sum_{i=1}^{n} Pr[pivot has rank i] \left(Q(A_{left}^{i}) + Q(A_{right}^{i})\right)$$

Since each element of $\bf A$ has probability exactly of 1/n of being chosen:

$$Q(A) = n + \sum_{i=1}^{n} \frac{1}{n} \left(Q(A_{left}^{i}) + Q(A_{right}^{i}) \right)$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} Pr[pivot has rank i] \left(Q(A_{left}^{i}) + Q(A_{right}^{i})\right)$$

Therefore, by linearity of expectation

$$\mathbf{E}[\mathbf{Q}(\mathbf{A})] = \mathbf{n} + \sum_{i=1}^{n} \mathbf{Pr}[\mathsf{pivot} \ \mathsf{of} \ \mathsf{rank} \ \mathsf{i}] \Big(\mathbf{E}[\mathbf{Q}(\mathbf{A}_{\mathsf{left}}^{\mathsf{i}})] + \mathbf{E}[\mathbf{Q}(\mathbf{A}_{\mathsf{right}}^{\mathsf{i}})] \Big) \,.$$

$$\Rightarrow \quad E\Big[Q(A)\Big] \leq n + \sum_{i=1}^n \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} Pr[pivot has rank i] \left(Q(A_{left}^{i}) + Q(A_{right}^{i})\right)$$

Therefore, by linearity of expectations

$$\mathbf{E}\Big[\mathbf{Q}(\mathbf{A})\Big] = \mathbf{n} + \sum_{i=1}^{n} \mathsf{Pr}\big[\mathsf{pivot} \ \mathsf{of} \ \mathsf{rank} \ \mathbf{i}\big]\Big(\mathbf{E}\big[\mathbf{Q}(\mathbf{A}_{\mathsf{left}}^{\mathsf{i}})\big] + \mathbf{E}\Big[\mathbf{Q}(\mathbf{A}_{\mathsf{right}}^{\mathsf{i}})\big]\Big) \,.$$

$$\Rightarrow \quad E\Big[Q(A)\Big] \leq n + \sum_{i=1}^n \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} Pr[pivot has rank i] \left(Q(A_{left}^{i}) + Q(A_{right}^{i})\right)$$

Therefore, by linearity of expectation:

$$\mathbf{E}\big[\mathbf{Q}(\mathbf{A})\big] = \mathbf{n} + \sum_{i=1}^{n} \mathsf{Pr}\big[\mathsf{pivot} \ \mathsf{of} \ \mathsf{rank} \ \mathbf{i}\big] \Big(\mathbf{E}\big[\mathbf{Q}(\mathbf{A}_{\mathsf{left}}^{\mathsf{i}})\big] + \mathbf{E}\big[\mathbf{Q}(\mathbf{A}_{\mathsf{right}}^{\mathsf{i}})\big]\Big) \,.$$

$$\Rightarrow \quad E\Big[Q(A)\Big] \leq n + \sum_{i=1}^n \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} Pr[pivot has rank i] \left(Q(A_{left}^{i}) + Q(A_{right}^{i})\right)$$

Therefore, by linearity of expectation:

$$\mathbf{E}\big[\mathbf{Q}(\mathbf{A})\big] = \mathbf{n} + \sum_{i=1}^{n} \mathsf{Pr}\big[\mathsf{pivot} \ \mathsf{of} \ \mathsf{rank} \ \mathbf{i}\big] \Big(\mathbf{E}\big[\mathbf{Q}(\mathbf{A}_{\mathsf{left}}^{\mathsf{i}})\big] + \mathbf{E}\big[\mathbf{Q}(\mathbf{A}_{\mathsf{right}}^{\mathsf{i}})\big]\Big) \,.$$

$$\Rightarrow \quad E\Big[Q(A)\Big] \leq n + \sum_{i=1}^n \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We derived:

$$\mathsf{E}[\mathsf{Q}(\mathsf{A})] \leq \mathsf{n} + \sum_{\mathsf{i}=1}^\mathsf{n} \frac{1}{\mathsf{n}} \left(\mathsf{T}(\mathsf{i}-1) + \mathsf{T}(\mathsf{n}-\mathsf{i}) \right).$$

Note that above holds for any A of size n. Therefore

$$\max_{A:|A|=n} E[Q(A)] = \mathsf{T}(n) \leq n + \sum_{i=1}^n \frac{1}{n} \left(\mathsf{T}(i-1) + \mathsf{T}(n-i) \right).$$

- **↓ロト ∢御 ▶ ∢**돌 ▶ ∢돌 ▶ · 돌 · 釣�♡

Sariel (UIUC) CS473 30 Spring 2011 30 / 42

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n. We derived:

$$\mathsf{E}[\mathsf{Q}(\mathsf{A})] \leq \mathsf{n} + \sum_{\mathsf{i}=1}^{\mathsf{n}} \frac{1}{\mathsf{n}} \left(\mathsf{T}(\mathsf{i}-1) + \mathsf{T}(\mathsf{n}-\mathsf{i}) \right).$$

Note that above holds for any A of size n. Therefore

$$\max_{A:|A|=n} E[Q(A)] = T(n) \le n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i)).$$

- ◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (^)

Sariel (UIUC) CS473 30 Spring 2011

Solving the Recurrence

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{n} + \sum_{\mathsf{i}=1}^\mathsf{n} \frac{1}{\mathsf{n}} \left(\mathsf{T}(\mathsf{i}-1) + \mathsf{T}(\mathsf{n}-\mathsf{i}) \right)$$

with base case T(1) = 0.

$$\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{n} \log \mathsf{n}).$$

Spring 2011

Sariel (UIUC) CS473

Solving the Recurrence

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{n} + \sum_{\mathsf{i}=1}^{\mathsf{n}} \frac{1}{\mathsf{n}} \left(\mathsf{T}(\mathsf{i}-1) + \mathsf{T}(\mathsf{n}-\mathsf{i}) \right)$$

with base case T(1) = 0.

Lemma

 $\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{n} \log \mathsf{n}).$

Proof

(Guess and) Verify by induction.

Spring 2011

31 / 42

Sariel (UIUC) CS473 31

Solving the Recurrence

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{n} + \sum_{\mathsf{i}=1}^{\mathsf{n}} \frac{1}{\mathsf{n}} \left(\mathsf{T}(\mathsf{i}-1) + \mathsf{T}(\mathsf{n}-\mathsf{i}) \right)$$

with base case T(1) = 0.

Lemma

 $\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{n}\log\mathsf{n}).$

Proof.

(Guess and) Verify by induction.

Let Q(A) be number of comparisons done on input array A:

- \bullet For $1 \leq i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
- \mathbf{X}_{ij} is the indicator random variable for \mathbf{R}_{ij} . That is, $\mathbf{X}_{ij} = \mathbf{1}$ if rank i is compared with rank j element, otherwise $\mathbf{0}$.

$$Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$$

and hence by linearity of expectation

$$\label{eq:epsilon} E\!\left[Q(A)\right] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} Pr[R_{ij}]\,.$$

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ か Q (^*)

Let Q(A) be number of comparisons done on input array A:

- \bullet For $1 \leq i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
- X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij}=1$ if rank i is compared with rank j element, otherwise 0.

$$Q(A) = \sum_{1 \le i < j \le n} X_{ij}$$

and hence by linearity of expectation,

$$\mathsf{E} \Big[\mathsf{Q}(\mathsf{A}) \Big] = \sum_{1 \leq i < j \leq n} \mathsf{E}[\mathsf{X}_{ij}] = \sum_{1 \leq i < j \leq n} \mathsf{Pr}[\mathsf{R}_{ij}] \,.$$

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ か Q (^*)

Question: What is Pr[R_{ij}]?

Lemma

$$\text{Pr}[R_{ij}] = \tfrac{2}{(j-i+1)}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of **A** in sorted order. Let

 $S = \{a_i, a_{i+1}, \dots, a_j\}$

Observation: If pivot is chosen outside **S** then all of **S** either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from **S** for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...

Question: What is $Pr[R_{ij}]$?

Lemma

$$\Pr[\mathsf{R}_{\mathsf{i}\mathsf{j}}] = \tfrac{2}{(\mathsf{j}-\mathsf{i}+1)}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of **A** in sorted order. Let $S = \{a_1, \ldots, a_n\}$

Observation: If pivot is chosen outside **S** then all of **S** either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...

Question: What is $Pr[R_{ij}]$?

Lemma

$$\text{Pr}[R_{ij}] = \tfrac{2}{(j-i+1)}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of **A** in sorted order. Let

 $S = \{a_i, a_{i+1}, \dots, a_j\}$

Observation: If pivot is chosen outside **S** then all of **S** either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from **S** for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...

Continued...

Lemma

$$\text{Pr}[R_{ij}] = \tfrac{2}{(j-i+1)}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be sort of **A**. Let

$$S = \{a_i, a_{i+1}, \dots, a_j\}$$

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation.

Observation: Given that pivot is chosen from **S** the probability that it is a_i or a_j is exactly 2/|S| = 2/(j-i+1) since the pivot is chosen uniformly at random from the array.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺

Continued...

$$\label{eq:energy_energy} E\big[Q(A)\big] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} Pr[R_{ij}]\,.$$

Lemma

$$\text{Pr}[R_{ij}] = \tfrac{2}{(j-i+1)}.$$

$$\begin{split} \mathsf{E} \Big[\mathsf{Q}(\mathsf{A}) \Big] \; &= \; \sum_{1 \leq i < j \leq n} \mathsf{Pr} [\mathsf{R}_{ij}] \; = \; \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1} \\ &= \; \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \; = \; 2 \sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j-i+1} \\ &= \; 2 \sum_{i=1}^{n-1} (\mathsf{H}_{n-i+1} - 1) \; \leq \; 2 \sum_{i=1}^{n} \mathsf{H}_{n} \\ &= \; 2 \sum_{i=1}^{n-1} (\mathsf{H}_{n-i+1} - 1) \; \leq \; 2 \sum_{i=1}^{n} \mathsf{H}_{n} \end{split}$$

Sariel (UIUC) CS473 35 Spring 2011 35 / 42

Continued...

Lemma

$$\Pr[R_{ij}] = \frac{2}{(j-i+1)}.$$

$$\begin{split} \mathsf{E} \Big[\mathsf{Q}(\mathsf{A}) \Big] &= \sum_{1 \leq i < j \leq n} \mathsf{Pr}[\mathsf{R}_{ij}] \, = \, \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1} \\ &= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \, = \, 2 \sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j-i+1} \\ &= \, 2 \sum_{i=1}^{n-1} (\mathsf{H}_{n-i+1} - 1) \, \leq \, 2 \sum_{1 \leq i < n} \mathsf{H}_{n} \\ &\leq \, 2 \mathsf{n} \mathsf{H}_{n} \, = \, \mathsf{O}(\mathsf{n} \, \mathsf{log} \, \mathsf{n}) \end{split}$$

Sariel (UIUC) CS473 35 Spring 2011 35 / 42

Randomized Quick Selection

Input Unsorted array **A** of **n** integers

Goal Find the **j**th smallest number in **A** (rank **j** number)

Randomized Quick Selection

- Pick a pivot element uniformly at random from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Return pivot if rank of pivot is j
- Otherwise recurse on one of the arrays depending on **j** and their sizes.

Sariel (UIUC) CS473 36 Spring 2011 36 / 42

Algorithm for Randomized Selection

Assume for simplicity that **A** has distinct elements.

```
\begin{split} &\text{QuickSelect}(\textbf{A}, \ j): \\ &\text{Pick pivot x uniformly at random from } \textbf{A} \\ &\text{Partition } \textbf{A} \text{ into } \textbf{A}_{\text{less}}, \ \textbf{x}, \text{ and } \textbf{A}_{\text{greater}} \text{ using x as pivot} \\ &\text{if } (|\textbf{A}_{\text{less}}| = j-1) \text{ then} \\ &\text{return } \textbf{x} \\ &\text{if } (|\textbf{A}_{\text{less}}|) \geq j) \text{ then} \\ &\text{return } \textbf{QuickSelect}(\textbf{A}_{\text{less}}, \ j) \\ &\text{else} \\ &\text{return } \textbf{QuickSelect}(\textbf{A}_{\text{greater}}, \ j-|\textbf{A}_{\text{less}}|-1) \end{split}
```

Sariel (UIUC) CS473 37 Spring 2011 37 / 42

- Given array A of size n let Q(A) be number of comparisons of randomized selection on A for selecting rank j element.
- Note that **Q(A)** is a random variable
- Let A_{less} and A_{greater} be the left and right arrays obtained if pivot is rank i element of A.
- Algorithm recurses on $\mathbf{A}_{less}^{\mathbf{i}}$ if $\mathbf{j} < \mathbf{i}$ and recurses on $\mathbf{A}_{greater}^{\mathbf{i}}$ if $\mathbf{j} > \mathbf{i}$ and terminates if $\mathbf{j} = \mathbf{i}$.

$$Q(A) = n + \sum_{i=1}^{j-1} Pr[pivot has rank i] Q(A_{greater}^{i})$$

$$+ \sum_{i=j+1}^{n} Pr[pivot has rank i] Q(A_{less}^{i})$$

Sariel (UIUC) CS473 38 Spring 2011 38 / 42

- Given array A of size n let Q(A) be number of comparisons of randomized selection on A for selecting rank j element.
- Note that Q(A) is a random variable
- Let A_{less} and A_{greater} be the left and right arrays obtained if pivot is rank i element of A.
- Algorithm recurses on $\mathbf{A}_{less}^{\mathbf{i}}$ if $\mathbf{j} < \mathbf{i}$ and recurses on $\mathbf{A}_{greater}^{\mathbf{i}}$ if $\mathbf{j} > \mathbf{i}$ and terminates if $\mathbf{j} = \mathbf{i}$.

$$Q(A) = n + \sum_{i=1}^{j-1} Pr[pivot \text{ has rank } i] Q(A_{greater}^{i})$$

$$+ \sum_{i=i+1}^{n} Pr[pivot \text{ has rank } i] Q(A_{less}^{i})$$

Sariel (UIUC) CS473 38 Spring 2011 38 / 42

Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where T(n) is the worst-case expected time.

$$T(n) \leq n + \frac{1}{n} (\sum_{i=1}^{j-1} T(n-i) + \sum_{i=j}^{n} T(i-1)).$$

Theorem

$$\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{n}).$$

Proof.

(Guess and) Verify by induction (see next slide).

Spring 2011

39 / 42

Sariel (UIUC) CS473 39

Analyzing the recurrence

Theorem

$$\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{n}).$$

Prove by induction that $T(n) \le \alpha n$ for some constant $\alpha \ge 1$ to be fixed later.

Base case: n = 1, we have T(1) = 0 since no comparisons needed and hence $T(1) \le \alpha$.

Induction step: Assume $T(k) \le \alpha k$ for $1 \le k < n$ and prove it for T(n). We have by the recurrence:

$$\begin{split} \mathsf{T}(\mathsf{n}) & \leq \mathsf{n} + \frac{1}{\mathsf{n}} (\sum_{i=1}^{\mathsf{j}-1} \mathsf{T}(\mathsf{n}-\mathsf{i}) + \sum_{i=\mathsf{j}^\mathsf{n}} \mathsf{T}(\mathsf{i}-1)) \\ & \leq \mathsf{n} + \frac{\alpha}{\mathsf{n}} (\sum_{i=1}^{\mathsf{j}-1} (\mathsf{n}-\mathsf{i}) + \sum_{i=\mathsf{j}}^\mathsf{n} (\mathsf{i}-1)) \text{ by applying induction} \end{split}$$

Sariel (UIUC) CS473 40 Spring 2011 40 / 42

Analyzing the recurrence

$$T(n) \leq n + \frac{\alpha}{n} (\sum_{i=1}^{j-1} (n-i) + \sum_{i=j}^{n} (i-1))$$

$$\leq n + \frac{\alpha}{n} ((j-1)(2n-j)/2 + (n-j+1)(n+j-2)/2)$$

$$\leq n + \frac{\alpha}{2n} (n^2 + 2nj - 2j^2 - 3n + 4j - 2)$$
above expression maximized when $j = (n+1)/2$: calculus
$$\leq n + \frac{\alpha}{2n} (3n^2/2 - n) \quad \text{substituting } (n+1)/2 \text{ for } j$$

$$\leq n + 3\alpha n/4$$

$$\leq \alpha n \quad \text{for any constant } \alpha \geq 4$$

Sariel (UIUC) CS473 41 Spring 2011 41 / 42

Comments on analyzing the recurrence

- Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug $\mathbf{j}=\mathbf{n}/2$ to simplify without calculus
- Analyzing recurrences comes with practice and after a while one can see things more intuitively

John Von Neumann:

Young man, in mathematics you don't understand things. You just get used to them.

Sariel (UIUC) CS473 43 Spring 2011 43 / 4

Sariel (UIUC) CS473 44 Spring 2011 44 / 4

Sariel (UIUC) CS473 45 Spring 2011 45 / 4

Sariel (UIUC) CS473 46 Spring 2011 46 / 4