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Part I

Introduction to Randomized Algorithms
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Example: Randomized QuickSort

QuickSort [Hoare, 1962]
Pick a pivot element from array

Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

Recursively sort the subarrays, and concatenate them.

Randomized QuickSort
Pick a pivot element uniformly at random from the array

Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

Recursively sort the subarrays, and concatenate them.

Sariel (UIUC) CS473 4 Spring 2011 4 / 42



Example: Randomized Quicksort

Recall: QuickSort can take Ω(n2) time to sort array of size n.

Theorem
Randomized QuickSort sorts a given array of length n in O(n log n)
expected time.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.
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Example: Verifying Matrix Multiplication

Problem
Given three n× n matrices A,B,C is AB = C?

Deterministic algorithm:

Multiply A and B and check if equal to C.

Running time? O(n3) by straight forward approach. O(n2.37)
with fast matrix multiplication (complicated and impractical).
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Example: Verifying Matrix Multiplication

Problem
Given three n× n matrices A,B,C is AB = C?

Randomized algorithm:
Pick a random n× 1 vector r.
Return the answer of the equality ABr = Cr.
Running time? O(n2)!

Theorem
If AB = C then the algorithm will always say YES. If AB 6= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.
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Why randomized algorithms?

Many many applications in algorithms, data structures and
computer science!

In some cases only known algorithms are randomized or
randomness is provably necessary.

Often randomized algorithms are (much) simpler and/or more
efficient.

Several deep connections to mathematics, physics etc.

. . .

Lots of fun!
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Where do I get random bits?

Question: Are true random bits available in practice?

Buy them!

CPUs use physical phenomena to generate random bits.

Can use pseudo-random bits or semi-random bits from nature.
Several fundamental unresolved questions in complexity theory
on this topic. Beyond the scope of this course.

In practice pseudo-random generators work quite well in many
applications.

The model is interesting to think in the abstract and is very
useful even as a theoretical construct. One can derandomize
randomized algorithms to obtain deterministic algorithms.
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Average case analysis vs Randomized algorithms

Average case analysis:

Fix a deterministic algorithm.

Assume inputs comes from a probability distribution.

Analyze the algorithm’s average performance over the
distribution over inputs.

Randomized algorithms:

Algorithm uses random bits in addition to input.

Analyze algorithms average performance over the given input
where the average is over the random bits that the algorithm
uses.

On each input behaviour of algorithm is random. Analyze
worst-case over all inputs of the (average) performance.
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Discrete Probability

We restrict attention to finite probability spaces.

Definition
A discrete probability space is a pair (Ω,Pr) consists of finite set Ω
of elementary events and function p : Ω→ [0, 1] which assigns a
probability Pr[ω] for each ω ∈ Ω such that

∑
ω∈Ω Pr[ω] = 1.

Example

An unbiased coin. Ω = {H,T} and Pr[H] = Pr[T] = 1/2.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.
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Discrete Probability
And more examples

Example

A biased coin. Ω = {H,T} and Pr[H] = 2/3,Pr[T] = 1/3.

Example

Two independent unbiased coins. Ω = {HH,TT,HT,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

Example

A pair of (highly) correlated dice.
Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
Pr[i, i] = 1/6 for 1 ≤ i ≤ 6 and Pr[i, j] = 0 if i 6= j.
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Events

Definition
Given a probability space (Ω,Pr) an event is a subset of Ω. In other
words an event is a collection of elementary events. The probability
of an event A, denoted by Pr[A], is

∑
ω∈A Pr[ω]. The complement

of an event A ⊆ Ω is the event Ω \ A frequently denoted by Ā.
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Events
Examples

Example

A pair of independent dice. Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
Let A be the event that the sum of the two numbers on the dice
is even. Then A = {(i, j) ∈ Ω | (i + j) is even}.
Pr[A] = |A|/36 = 1/2.

Let B be the event that the first die has 1. Then
B =

{
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)

}
.

Pr[B] = 6/36 = 1/6.
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Independent Events

Definition
Given a probability space (Ω,Pr) and two events A,B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A,B independent implies one
does not affect the other.

Example

Two coins. Ω = {HH,TT,HT,TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

A is the event that the first coin is heads and B is the event
that second coin is tails. A,B are independent.

A is the event that the two coins are different. B is the event
that the second coin is heads. A,B independent.
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Independent Events
Examples

Example
A is the event that both are not tails and B is event that second coin
is heads. A,B are dependent.
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Random Variables

Definition
Given a probability space (Ω,Pr) a (real-valued) random variable X
over Ω is a function that maps each elementary event to a real
number. In other words X : Ω→ R.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

X : Ω→ R where X(i) = i mod 2.

Y : Ω→ R where Y(i) = i2.

Definition
A binary random variable is one that takes on values in {0, 1}.
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Indicator Random Variables

Special type of random variables that are quite useful.

Definition
Given a probability space (Ω,Pr) and an event A ⊆ Ω the indicator
random variable XA is a binary random variable where XA(ω) = 1 if
ω ∈ A and XA(ω) = 0 if ω 6∈ A.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6. Let A be the even that i is divisible by 3. Then
XA(i) = 1 if i = 3, 6 and 0 otherwise.
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Expectation

Definition
For a random variable X over a probability space (Ω,Pr) the
expectation of X is defined as

∑
ω∈Ω Pr[ω] X(ω). In other words,

the expectation is the average value of X according to the
probabilities given by Pr[·].

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

X : Ω→ R where X(i) = i mod 2. Then E[X] = 1/2.

Y : Ω→ R where Y(i) = i2. Then

E[Y] =
∑6

i=1
1
6
· i2 = 91/6.
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Expectation

Proposition

For an indicator variable XA, E[XA] = Pr[A].

Proof.

E[XA] =
∑
y∈Ω

XA(y) Pr[y]

=
∑
y∈A

1 · Pr[y] +
∑

y∈Ω\A

0 · Pr[y]

=
∑
y∈A

Pr[y]

= Pr[A] .
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Linearity of Expectation

Lemma
Let X,Y be two random variables over a probability space (Ω,Pr).
Then E[X + Y] = E[X] + E[Y].

Proof.

E[X + Y] =
∑
ω∈Ω

Pr[ω] (X(ω) + Y(ω))

=
∑
ω∈Ω

Pr[ω] X(ω) +
∑
ω∈Ω

Pr[ω] Y(ω) = E[X] + E[Y] .

Corollary

E[a1X1 + a2X2 + . . . + anXn] =
∑n

i=1 ai E[Xi].
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Types of Randomized Algorithms

Typically one encounters the following types:

Las Vegas randomized algorithms: for a given input x
output of algorithm is always correct but the running time is a
random variable. In this case we are interested in analyzing the
expected running time.

Monte Carlo randomized algorithms: for a given input x the
running time is deterministic but the output is random; correct
with some probability. In this case we are interested in analyzing
the probability of the correct output (and also the running time).

Algorithms whose running time and output may both be random.
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Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π:

Let Q(x) be the time for Q to run on input x of length |x|.
Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max
x:|x|=n

Q(x).

Randomized algorithm R for a problem Π:

Let R(x) be the time for Q to run on input x of length |x|.
R(x) is a random variable: depends on random bits used by R.

E[R(x)] is the expected running time for R on x

Worst-case analysis: expected time on worst input of size n

Trand−wc(n) = max
x:|x|=n

E[Q(x)] .
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Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π:

Let M(x) be the time for M to run on input x of length |x|. For
Monte Carlo, assumption is that run time is deterministic.

Let Pr[x] be the probability that M is correct on x.

Pr[x] is a random variable: depends on random bits used by M.

Worst-case analysis: success probability on worst input

Prand−wc(n) = min
x:|x|=n

Pr[x] .
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Part II

Randomized Quick Sort and Selection
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Randomized QuickSort

Randomized QuickSort
Pick a pivot element uniformly at random from the array

Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

Recursively sort the subarrays, and concatenate them.
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Example

array: 16, 12, 14, 20, 5, 3, 18, 19, 1
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Analysis via Recurrence

Given array A of size n let Q(A) be number of comparisons of
randomized QuickSort on A.

Note that Q(A) is a random variable

Let Ai
left and Ai

right be the left and right arrays obtained if:

pivot is of rank i in A.

Q(A) = n +
n∑

i=1

Pr[pivot has rank i]
(

Q(Ai
left) + Q(Ai

right)
)

Since each element of A has probability exactly of 1/n of being
chosen:

Q(A) = n +
n∑

i=1

1

n

(
Q(Ai

left) + Q(Ai
right)

)
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Analysis via Recurrence

Let T(n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Pr[pivot has rank i]
(

Q(Ai
left) + Q(Ai

right)
)

Therefore, by linearity of expectation:

E
[
Q(A)

]
= n+

n∑
i=1

Pr[pivot of rank i]
(

E
[
Q(Ai

left)
]

+ E
[
Q(Ai

right)
])
.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T(i− 1) + T(n− i)) .
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Analysis via Recurrence

Let T(n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.
We derived:

E[Q(A)] ≤ n +
n∑

i=1

1

n
(T(i− 1) + T(n− i)) .

Note that above holds for any A of size n. Therefore

max
A:|A|=n

E[Q(A)] = T(n) ≤ n +
n∑

i=1

1

n
(T(i− 1) + T(n− i)) .
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Solving the Recurrence

T(n) ≤ n +
n∑

i=1

1

n
(T(i− 1) + T(n− i))

with base case T(1) = 0.

Lemma
T(n) = O(n log n).

Proof.
(Guess and) Verify by induction.
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A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:

For 1 ≤ i < j < n let Rij be the event that rank i element is
compared with rank j element.

Xij is the indicator random variable for Rij. That is, Xij = 1 if
rank i is compared with rank j element, otherwise 0.

Q(A) =
∑

1≤i<j≤n

Xij

and hence by linearity of expectation,

E
[
Q(A)

]
=

∑
1≤i<j≤n

E[Xij] =
∑

1≤i<j≤n

Pr[Rij] .
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A Slick Analysis of QuickSort

Question: What is Pr[Rij]?

Lemma

Pr[Rij] = 2
(j−i+1)

.

Proof.
Let a1, . . . , ai, . . . , aj, . . . , an be elements of A in sorted order. Let
S = {ai, ai+1, . . . , aj}
Observation: If pivot is chosen outside S then all of S either in left
array or right array.
Observation: ai and aj separated when a pivot is chosen from S for
the first time. Once separated no comparison.
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation...
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A Slick Analysis of QuickSort
Continued...

Lemma

Pr[Rij] = 2
(j−i+1)

.

Proof.
Let a1, . . . , ai, . . . , aj, . . . , an be sort of A. Let
S = {ai, ai+1, . . . , aj}
Observation: ai is compared with aj if and only if either ai or aj is
chosen as a pivot from S at separation.
Observation: Given that pivot is chosen from S the probability that
it is ai or aj is exactly 2/|S| = 2/(j− i + 1) since the pivot is
chosen uniformly at random from the array.
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A Slick Analysis of QuickSort
Continued...

E
[
Q(A)

]
=

∑
1≤i<j≤n

E[Xij] =
∑

1≤i<j≤n

Pr[Rij] .

Lemma

Pr[Rij] = 2
(j−i+1)

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

Pr[Rij] =
∑

1≤i<j≤n

2

j− i + 1

=
n−1∑
i=1

n∑
j=i+1

2

j− i + 1
= 2

n−1∑
i=1

n∑
i<j

1

j− i + 1

= 2
n−1∑
i=1

(Hn−i+1 − 1) ≤ 2
∑

1≤i<n

Hn

≤ 2nHn = O(n log n)
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Randomized Quick Selection

Input Unsorted array A of n integers

Goal Find the jth smallest number in A (rank j number)

Randomized Quick Selection
Pick a pivot element uniformly at random from the array

Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

Return pivot if rank of pivot is j

Otherwise recurse on one of the arrays depending on j and their
sizes.
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Algorithm for Randomized Selection

Assume for simplicity that A has distinct elements.

QuickSelect(A, j):
Pick pivot x uniformly at random from A
Partition A into Aless, x, and Agreater using x as pivot

if (|Aless| = j− 1) then
return x

if (|Aless|) ≥ j) then
return QuickSelect(Aless, j)

else
return QuickSelect(Agreater, j− |Aless| − 1)
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Analysis via Recurrence

Given array A of size n let Q(A) be number of comparisons of
randomized selection on A for selecting rank j element.

Note that Q(A) is a random variable

Let Ai
less and Ai

greater be the left and right arrays obtained if
pivot is rank i element of A.

Algorithm recurses on Ai
less if j < i and recurses on Ai

greater if
j > i and terminates if j = i.

Q(A) = n +

j−1∑
i=1

Pr[pivot has rank i] Q(Ai
greater)

+
n∑

i=j+1

Pr[pivot has rank i] Q(Ai
less)
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Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where T(n) is
the worst-case expected time.

T(n) ≤ n +
1

n
(

j−1∑
i=1

T(n− i) +
n∑

i=j

T(i− 1)).

Theorem
T(n) = O(n).

Proof.
(Guess and) Verify by induction (see next slide).
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Analyzing the recurrence

Theorem
T(n) = O(n).

Prove by induction that T(n) ≤ αn for some constant α ≥ 1 to be
fixed later.
Base case: n = 1, we have T(1) = 0 since no comparisons needed
and hence T(1) ≤ α.
Induction step: Assume T(k) ≤ αk for 1 ≤ k < n and prove it
for T(n). We have by the recurrence:

T(n) ≤ n +
1

n
(

j−1∑
i=1

T(n− i) +
∑
i=jn

T(i− 1))

≤ n +
α

n
(

j−1∑
i=1

(n− i) +
n∑

i=j

(i− 1)) by applying induction
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Analyzing the recurrence

T(n) ≤ n +
α

n
(

j−1∑
i=1

(n− i) +
n∑

i=j

(i− 1))

≤ n +
α

n
((j− 1)(2n− j)/2 + (n− j + 1)(n + j− 2)/2)

≤ n +
α

2n
(n2 + 2nj− 2j2 − 3n + 4j− 2)

above expression maximized when j = (n + 1)/2: calculus

≤ n +
α

2n
(3n2/2− n) substituting (n + 1)/2 for j

≤ n + 3αn/4

≤ αn for any constant α ≥ 4
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Comments on analyzing the recurrence

Algebra looks messy but intuition suggest that the median is the
hardest case and hence can plug j = n/2 to simplify without
calculus

Analyzing recurrences comes with practice and after a while one
can see things more intuitively

John Von Neumann:
Young man, in mathematics you don’t understand things. You just
get used to them.
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