Part I

Introduction to Randomized Algorithms
Randomized Algorithms

Example: Randomized QuickSort

QuickSort

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Randomized QuickSort

- Pick a pivot element *uniformly at random* from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.
Example: Randomized Quicksort

Recall: **QuickSort** can take $\Omega(n^2)$ time to sort array of size n.

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $AB = C$?

Deterministic algorithm:
- Multiply A and B and check if equal to C.
- Running time? $O(n^3)$ by straight forward approach. $O(n^{2.37})$ with fast matrix multiplication (complicated and impractical).
Example: Verifying Matrix Multiplication

Problem
Given three \(n \times n \) matrices \(A, B, C \) is \(AB = C \)?

Randomized algorithm:
- Pick a random \(n \times 1 \) vector \(r \).
- Return the answer of the equality \(ABr = Cr \).
- Running time? \(O(n^2) \)!

Theorem
If \(AB = C \) then the algorithm will always say YES. If \(AB \neq C \) then the algorithm will say YES with probability at most \(\frac{1}{2} \). Can repeat the algorithm 100 times independently to reduce the probability of a false positive to \(\frac{1}{2^{100}} \).

Why randomized algorithms?
- Many many applications in algorithms, data structures and computer science!
- In some cases only known algorithms are randomized or randomness is provably necessary.
- Often randomized algorithms are (much) simpler and/or more efficient.
- Several deep connections to mathematics, physics etc.
- . . .
- Lots of fun!
Where do I get random bits?

Question: Are true random bits available in practice?

- Buy them!
- CPUs use physical phenomena to generate random bits.
- Can use pseudo-random bits or semi-random bits from nature. Several fundamental unresolved questions in complexity theory on this topic. Beyond the scope of this course.
- In practice pseudo-random generators work quite well in many applications.
- The model is interesting to think in the abstract and is very useful even as a theoretical construct. One can *derandomize* randomized algorithms to obtain deterministic algorithms.

Average case analysis vs Randomized algorithms

Average case analysis:

- Fix a deterministic algorithm.
- Assume inputs comes from a probability distribution.
- Analyze the algorithm’s *average* performance over the distribution over inputs.

Randomized algorithms:

- Algorithm uses random bits in addition to input.
- Analyze algorithms *average* performance over the given input where the average is over the random bits that the algorithm uses.
- On each input behaviour of algorithm is random. Analyze worst-case over all inputs of the (average) performance.
Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair \((\Omega, \Pr)\) consists of finite set \(\Omega\) of *elementary* events and function \(p : \Omega \to [0, 1]\) which assigns a probability \(\Pr[\omega]\) for each \(\omega \in \Omega\) such that \(\sum_{\omega \in \Omega} \Pr[\omega] = 1\).

Example

An unbiased coin. \(\Omega = \{H, T\}\) and \(\Pr[H] = \Pr[T] = 1/2\).

Example

A 6-sided unbiased die. \(\Omega = \{1, 2, 3, 4, 5, 6\}\) and \(\Pr[i] = 1/6\) for \(1 \leq i \leq 6\).

Example

A biased coin. \(\Omega = \{H, T\}\) and \(\Pr[H] = 2/3, \Pr[T] = 1/3\).

Example

Two independent unbiased coins. \(\Omega = \{HH, TT, HT, TH\}\) and \(\Pr[HH] = \Pr[TT] = \Pr[HT] = \Pr[TH] = 1/4\).

Example

A pair of (highly) correlated dice. \(\Omega = \{(i,j) \mid 1 \leq i \leq 6, 1 \leq j \leq 6\}\). \(\Pr[i, i] = 1/6\) for \(1 \leq i \leq 6\) and \(\Pr[i, j] = 0\) if \(i \neq j\).
Events

Definition

Given a probability space \((\Omega, \Pr) \) an event is a subset of \(\Omega \). In other words an event is a collection of elementary events. The probability of an event \(A \), denoted by \(\Pr[A] \), is \(\sum_{\omega \in A} \Pr[\omega] \). The complement of an event \(A \subseteq \Omega \) is the event \(\Omega \setminus A \) frequently denoted by \(\bar{A} \).

Events

Examples

Example

A pair of independent dice. \(\Omega = \{(i, j) \mid 1 \leq i \leq 6, 1 \leq j \leq 6\} \).

- Let \(A \) be the event that the sum of the two numbers on the dice is even. Then \(A = \{(i, j) \in \Omega \mid (i + j) \text{ is even}\} \).
 \[\Pr[A] = \frac{|A|}{36} = \frac{1}{2}. \]
- Let \(B \) be the event that the first die has 1. Then \(B = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)\} \).
 \[\Pr[B] = \frac{6}{36} = \frac{1}{6}. \]
Definition

Given a probability space \((\Omega, \Pr)\) and two events \(A, B\) are **independent** if and only if \(\Pr[A \cap B] = \Pr[A] \Pr[B]\). Otherwise they are **dependent**. In other words \(A, B\) independent implies one does not affect the other.

Example

Two coins. \(\Omega = \{HH, TT, HT, TH\}\) and
\[\Pr[HH] = \Pr[TT] = \Pr[HT] = \Pr[TH] = 1/4.\]

- \(A\) is the event that the first coin is heads and \(B\) is the event that second coin is tails. \(A, B\) are independent.
- \(A\) is the event that the two coins are different. \(B\) is the event that the second coin is heads. \(A, B\) independent.

Example

\(A\) is the event that both are not tails and \(B\) is event that second coin is heads. \(A, B\) are dependent.
Random Variables

Definition

Given a probability space \((\Omega, \Pr)\) a (real-valued) random variable \(X\) over \(\Omega\) is a function that maps each elementary event to a real number. In other words \(X : \Omega \rightarrow \mathbb{R}\).

Example

A 6-sided unbiased die. \(\Omega = \{1, 2, 3, 4, 5, 6\}\) and \(\Pr[i] = 1/6\) for \(1 \leq i \leq 6\).

- \(X : \Omega \rightarrow \mathbb{R}\) where \(X(i) = i \mod 2\).
- \(Y : \Omega \rightarrow \mathbb{R}\) where \(Y(i) = i^2\).

Definition

A **binary random variable** is one that takes on values in \(\{0, 1\}\).

Indicator Random Variables

Special type of random variables that are quite useful.

Definition

Given a probability space \((\Omega, \Pr)\) and an event \(A \subseteq \Omega\) the indicator random variable \(X_A\) is a binary random variable where \(X_A(\omega) = 1\) if \(\omega \in A\) and \(X_A(\omega) = 0\) if \(\omega \not\in A\).

Example

A 6-sided unbiased die. \(\Omega = \{1, 2, 3, 4, 5, 6\}\) and \(\Pr[i] = 1/6\) for \(1 \leq i \leq 6\). Let \(A\) be the even that \(i\) is divisible by 3. Then \(X_A(i) = 1\) if \(i = 3, 6\) and 0 otherwise.
Expectation

Definition

For a random variable X over a probability space (Ω, \Pr) the **expectation** of X is defined as $\sum_{\omega \in \Omega} \Pr[\omega] X(\omega)$. In other words, the expectation is the average value of X according to the probabilities given by $\Pr[\cdot]$.

Example

A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for $1 \leq i \leq 6$.

- $X : \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$. Then $E[X] = 1/2$.
- $Y : \Omega \to \mathbb{R}$ where $Y(i) = i^2$. Then $E[Y] = \sum_{i=1}^{6} \frac{1}{6} \cdot i^2 = \frac{91}{6}$.

Proposition

For an indicator variable X_A, $E[X_A] = \Pr[A]$.

Proof.

$$
E[X_A] = \sum_{y \in \Omega} X_A(y) \Pr[y]
= \sum_{y \in A} 1 \cdot \Pr[y] + \sum_{y \in \Omega \setminus A} 0 \cdot \Pr[y]
= \sum_{y \in A} \Pr[y]
= \Pr[A].
$$
Lemma

Let X, Y be two random variables over a probability space (Ω, \Pr). Then $E[X + Y] = E[X] + E[Y]$.

Proof.

$$E[X + Y] = \sum_{\omega \in \Omega} \Pr[\omega] (X(\omega) + Y(\omega))$$

$$= \sum_{\omega \in \Omega} \Pr[\omega] X(\omega) + \sum_{\omega \in \Omega} \Pr[\omega] Y(\omega) = E[X] + E[Y].$$

Corollary

$$E[a_1X_1 + a_2X_2 + \ldots + a_nX_n] = \sum_{i=1}^{n} a_i E[X_i].$$

Types of Randomized Algorithms

Typically one encounters the following types:

- **Las Vegas randomized algorithms**: for a given input x, output of algorithm is always correct but the running time is a random variable. In this case we are interested in analyzing the expected running time.

- **Monte Carlo randomized algorithms**: for a given input x the running time is deterministic but the output is random; correct with some probability. In this case we are interested in analyzing the probability of the correct output (and also the running time).

- Algorithms whose running time and output may both be random.
Deterministic algorithm Q for a problem Π:

- Let $Q(x)$ be the time for Q to run on input x of length $|x|$.
- Worst-case analysis: run time on worst input for a given size n.

$$T_{wc}(n) = \max_{x:|x|=n} Q(x).$$

Randomized algorithm R for a problem Π:

- Let $R(x)$ be the time for Q to run on input x of length $|x|$.
- $R(x)$ is a random variable: depends on random bits used by R.
- $E[R(x)]$ is the expected running time for R on x.
- Worst-case analysis: expected time on worst input of size n

$$T_{rand-wc}(n) = \max_{x:|x|=n} E[Q(x)].$$

Randomized algorithm M for a problem Π:

- Let $M(x)$ be the time for M to run on input x of length $|x|$. For Monte Carlo, assumption is that run time is deterministic.
- Let $Pr[x]$ be the probability that M is correct on x.
- $Pr[x]$ is a random variable: depends on random bits used by M.
- Worst-case analysis: success probability on worst input

$$P_{rand-wc}(n) = \min_{x:|x|=n} Pr[x].$$
Part II

Randomized Quick Sort and Selection

Randomized QuickSort

- Pick a pivot element *uniformly at random* from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.
Example

- array: 16, 12, 14, 20, 5, 3, 18, 19, 1

Analysis via Recurrence

- Given array A of size n let $Q(A)$ be number of comparisons of randomized QuickSort on A.
- Note that $Q(A)$ is a random variable.
- Let A^i_{left} and A^i_{right} be the left and right arrays obtained if:

\[Q(A) = n + \sum_{i=1}^{n} \Pr[\text{pivot has rank } i] \left(Q(A^i_{\text{left}}) + Q(A^i_{\text{right}}) \right) \]

Since each element of A has probability exactly of $1/n$ of being chosen:

\[Q(A) = n + \sum_{i=1}^{n} \frac{1}{n} \left(Q(A^i_{\text{left}}) + Q(A^i_{\text{right}}) \right) \]
Analysis via Recurrence

Let \(T(n) = \max_A:|A|=n E[Q(A)] \) be the worst-case expected running time of randomized QuickSort on arrays of size \(n \).

We have, for any \(A \):

\[
Q(A) = n + \sum_{i=1}^{n} \Pr[\text{pivot has rank } i] \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i) \right)
\]

Therefore, by linearity of expectation:

\[
E[Q(A)] = n + \sum_{i=1}^{n} \Pr[\text{pivot of rank } i] \left(E[Q(A_{\text{left}}^i)] + E[Q(A_{\text{right}}^i)] \right).
\]

\[
\Rightarrow E[Q(A)] \leq n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i)).
\]

Note that above holds for any \(A \) of size \(n \). Therefore

\[
\max_{A:|A|=n} E[Q(A)] = T(n) \leq n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i)).
\]
Solving the Recurrence

\[T(n) \leq n + \sum_{i=1}^{n} \frac{1}{n} (T(i - 1) + T(n - i)) \]

with base case \(T(1) = 0 \).

Lemma

\(T(n) = O(n \log n) \).

Proof.

(Guess and) Verify by induction.

A Slick Analysis of **QuickSort**

Let \(Q(A) \) be number of comparisons done on input array \(A \):

- For \(1 \leq i < j < n \) let \(R_{ij} \) be the event that rank \(i \) element is compared with rank \(j \) element.

- \(X_{ij} \) is the indicator random variable for \(R_{ij} \). That is, \(X_{ij} = 1 \) if rank \(i \) is compared with rank \(j \) element, otherwise \(0 \).

\[Q(A) = \sum_{1 \leq i < j \leq n} X_{ij} \]

and hence by linearity of expectation,

\[E\left[Q(A) \right] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} Pr[R_{ij}] . \]
A Slick Analysis of **QuickSort**

Question: What is $\Pr[R_{ij}]$?

Lemma

$$\Pr[R_{ij}] = \frac{2}{(j-i+1)}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation.

A Slick Analysis of **QuickSort**

Continued...

Lemma

$$\Pr[R_{ij}] = \frac{2}{(j-i+1)}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be sort of A. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation.

Observation: Given that pivot is chosen from S the probability that it is a_i or a_j is exactly $2/|S| = 2/(j-i+1)$ since the pivot is chosen uniformly at random from the array.
A Slick Analysis of QuickSort

Continued...

\[E[Q(A)] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}] . \]

Lemma

\[\Pr[R_{ij}] = \frac{2}{(j-i+1)} . \]

\[
E[Q(A)] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1} \\
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = 2 \sum_{i=1}^{n-1} \sum_{i<j} \frac{1}{j-i+1} \\
= 2 \sum_{i=1}^{n-1} (H_{n-i+1} - 1) \leq 2 \sum_{1 \leq i \leq n} H_n \\
\leq 2nH_n = \mathcal{O}(n \log n)
\]

Randomized Quick Selection

Input Unsorted array \(A \) of \(n \) integers

Goal Find the \(j \)th smallest number in \(A \) (rank \(j \) number)

Randomized Quick Selection

- Pick a pivot element *uniformly at random* from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Return pivot if rank of pivot is \(j \)
- Otherwise recurse on one of the arrays depending on \(j \) and their sizes.
Algorithm for Randomized Selection

Assume for simplicity that A has distinct elements.

QuickSelect(A, j):
 Pick pivot x uniformly at random from A
 Partition A into A_{less}, x, and A_{greater} using x as pivot
 if ($|A_{\text{less}}| = j - 1$) then
 return x
 else
 if ($|A_{\text{less}}| \geq j$) then
 return QuickSelect(A_{less}, j)
 else
 return QuickSelect(A_{greater}, $j - |A_{\text{less}}| - 1$)

Analysis via Recurrence

- Given array A of size n let $Q(A)$ be number of comparisons of randomized selection on A for selecting rank j element.
- Note that $Q(A)$ is a random variable
- Let A_{less}^i and A_{greater}^i be the left and right arrays obtained if pivot is rank i element of A.
- Algorithm recurses on A_{less}^i if $j < i$ and recurses on A_{greater}^i if $j > i$ and terminates if $j = i$.

\[
Q(A) = n + \sum_{i=1}^{j-1} \Pr[\text{pivot has rank } i] Q(A_{\text{greater}}^i) + \sum_{i=j+1}^{n} \Pr[\text{pivot has rank } i] Q(A_{\text{less}}^i)
\]
Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where $T(n)$ is the worst-case expected time.

$$T(n) \leq n + \frac{1}{n} \left(\sum_{i=1}^{j-1} T(n-i) + \sum_{i=j}^{n} T(i-1) \right).$$

Theorem

$T(n) = O(n)$.

Proof.

(Guess and) Verify by induction (see next slide).

Analyzing the recurrence

Theorem

$T(n) = O(n)$.

Prove by induction that $T(n) \leq \alpha n$ for some constant $\alpha \geq 1$ to be fixed later.

Base case: $n = 1$, we have $T(1) = 0$ since no comparisons needed and hence $T(1) \leq \alpha$.

Induction step: Assume $T(k) \leq \alpha k$ for $1 \leq k < n$ and prove it for $T(n)$. We have by the recurrence:

$$T(n) \leq n + \frac{1}{n} \left(\sum_{i=1}^{j-1} T(n-i) + \sum_{i=j}^{n} T(i-1) \right)$$

$$\leq n + \frac{\alpha}{n} \left(\sum_{i=1}^{j-1} (n-i) + \sum_{i=j}^{n} (i-1) \right) \text{ by applying induction}$$
Analyzing the recurrence

\[T(n) \leq n + \frac{\alpha}{n} \left(\sum_{i=1}^{j-1} (n - i) + \sum_{i=j}^{n} (i - 1) \right) \]

\[\leq n + \frac{\alpha}{n} \cdot \frac{(j - 1)(2n - j)}{2} + \frac{(n - j + 1)(n + j - 2)}{2} \]

\[\leq n + \frac{\alpha}{2n} \cdot \left(n^2 + 2nj - 2j^2 - 3n + 4j - 2 \right) \]

above expression maximized when \(j = (n + 1)/2 \): calculus

\[\leq n + \frac{\alpha}{2n} \cdot \left(\frac{3n^2}{2} - n \right) \]

substituting \((n + 1)/2 \) for \(j \)

\[\leq n + 3\alpha n/4 \]

\[\leq \alpha n \quad \text{for any constant } \alpha \geq 4 \]

Comments on analyzing the recurrence

- Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug \(j = n/2 \) to simplify without calculus
- Analyzing recurrences comes with practice and after a while one can see things more intuitively

John Von Neumann:

Young man, in mathematics you don’t understand things. You just get used to them.