DFS in Directed Graphs, Strong Connected Components, and DAGs

Lecture 2
January 20, 2011

Strong Connected Components (SCCs)

![Directed Graph](image)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture: saw an \(O(n \cdot (n + m)) \) time algorithm.
This lecture: \(O(n + m) \) time algorithm.
Graph of SCCs

Meta-graph of SCCs
Let S_1, S_2, \ldots, S_k be the SCCs of G. The graph of SCCs is G^{SCC}.
- Vertices are S_1, S_2, \ldots, S_k
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

Reversal and SCCs

Proposition
For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC}.

Proof.
Exercise.
Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ is an SCC in G. Formal details: exercise.
Directed Acyclic Graphs

Definition
A directed graph G is a **directed acyclic graph** (DAG) if there is no directed cycle in G.

![Directed Acyclic Graph](image)

Sources and Sinks

Definition
- A vertex u is a **source** if it has no in-coming edges.
- A vertex u is a **sink** if it has no out-going edges.

![Sources and Sinks](image)
Simple DAG Properties

- Every **DAG** G has at least one source and at least one sink.
- If G is a **DAG** if and only if G^{rev} is a **DAG**.
- G is a **DAG** if and only each node is in its own strong connected component.

Formal proofs: exercise.

Topological Ordering/Sorting

Definition

A **topological ordering/topological sorting** of $G = (V, E)$ is an ordering $<$ on V such that if $(u, v) \in E$ then $u < v$.

Figure: Graph G

Figure: Topological Ordering of G
Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

Only if: Suppose G is not a DAG and has a topological ordering $<$. G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$. Then $u_1 < u_2 < \ldots < u_k < u_1$! A contradiction.

Proof.

If: Consider the following algorithm:

- Pick a source u, output it.
- Remove u and all edges out of u.
- Repeat until graph is empty.

Exercise: prove this gives an ordering.

Topological Sort: An Example

Output: 1 2 3 4
DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?
Using DFS...
... to check for Acyclicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:
- Compute $\text{DFS}(G)$
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition
G is a DAG iff there is no back-edge in $\text{DFS}(G)$.

Proposition
If G is a DAG and $\text{post}(v) > \text{post}(u)$, then (u, v) is not in G.

Example

```
  2 --3
  |   |
  v   v
  1 --4
```
Back edge and Cycles

Proposition

\(G \) has a cycle iff there is a back-edge in \(\text{DFS}(G) \).

Proof.

If: \((u, v)\) is a back edge implies there is a cycle \(C \) consisting of the path from \(v \) to \(u \) in \(\text{DFS} \) search tree and the edge \((u, v)\).

Only if: Suppose there is a cycle \(C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1 \). Let \(v_i \) be first node in \(C \) visited in \(\text{DFS} \). All other nodes in \(C \) are descendents of \(v_i \) since they are reachable from \(v_i \). Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1 \)) is a back edge.

DAGs and Partial Orders

Definition

A **partially ordered set** is a set \(S \) along with a binary relation \(\leq \) such that \(\leq \) is

1. reflexive (\(a \leq a \) for all \(a \in V \)),
2. anti-symmetric (\(a \leq b \) and \(a \neq b \) implies \(b \not\leq a \)), and
3. transitive (\(a \leq b \) and \(b \leq c \) implies \(a \leq c \)).

Example: For numbers in the plane define \((x, y) \leq (x', y')\) iff \(x \leq x' \) and \(y \leq y' \).

Observation: A finite partially ordered set is equivalent to a **DAG**.

Observation: A topological sort of a **DAG** corresponds to a complete (or total) ordering of the underlying partial order.
Finding all SCCs of a Directed Graph

Problem
Given a directed graph $G = (V, E)$, output all its strong connected components.

Straightforward algorithm:

For each vertex $u \in V$ do
 find $SCC(G, u)$ the strong component containing u as follows:
 Obtain $rch(G, u)$ using $DFS(G, u)$
 Obtain $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$
 Output $SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)$

Running time: $O(n(n + m))$

Is there an $O(n + m)$ time algorithm?
Structure of a Directed Graph

Figure: Graph G

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph.

Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do $DFS(u)$ to compute $SCC(u)$
- Remove $SCC(u)$ and repeat

Justification

- $DFS(u)$ only visits vertices (and edges) in $SCC(u)$
- $DFS(u)$ takes time proportional to size of $SCC(u)$
- Therefore, total time $O(n + m)$!
Big Challenge(s)

How do we find a vertex in the sink SCC of G^{SCC}?

Can we obtain an implicit topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!

Post-visit times of SCCs

Definition

Given G and a SCC S of G, define $\text{post}(S) = \max_{u \in S} \text{post}(u)$ where post numbers are with respect to some $\text{DFS}(G)$.
An Example

Figure: Graph G

Figure: Graph with pre-post times for $\text{DFS}(A)$; black edges in tree

Figure: G^{SCC} with post times

G^{SCC} and post-visit times

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u')$.
Corollary

Ordering SCCs in decreasing order of $\text{post}(S)$ gives a topological ordering of G^SCC

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So...

$\text{DFS}(G)$ gives some information on topological ordering of G^SCC!

Finding Sources

Proposition

The vertex u with the highest post visit time belongs to a source SCC in G^SCC

Proof.

- $\text{post}(\text{SCC}(u)) = \text{post}(u)$
- Thus, $\text{post}(\text{SCC}(u))$ is highest and will be output first in topological ordering of G^SCC.
Finding Sinks

Proposition

The vertex \(u \) with highest post visit time in \(\text{DFS}(G^{rev}) \) belongs to a sink SCC of \(G \).

Proof.

- \(u \) belongs to source SCC of \(G^{rev} \)
- Since graph of SCCs of \(G^{rev} \) is the reverse of \(G^{SCC} \), \(SCC(u) \) is sink SCC of \(G \).

Linear Time Algorithm

Do \(\text{DFS}(G^{rev}) \) and sort vertices in decreasing post order.
Mark all nodes as unvisited
for each \(u \) in the computed order do
 if \(u \) is not visited then
 \(\text{DFS}(u) \)
 Let \(S_u \) be the nodes reached by \(u \)
 Output \(S_u \) as a strong connected component
 Remove \(S_u \) from \(G \)

Analysis

Running time is \(O(n + m) \). (Exercise)
Linear Time Algorithm: An Example - Initial steps

Graph G:

Reverse graph G^{rev}:

DFS of reverse graph:

Pre/Post **DFS** numbering of reverse graph:

Removing connected components: 1

Original graph G with rev post numbers:

Do **DFS** from vertex G

remove it.

SCC computed:

$\{G\}$
Linear Time Algorithm: An Example

Removing connected components: 2

Do **DFS** from vertex **G** remove it.

SCC computed: \{G\}

Removing connected components: 3

Do **DFS** from vertex **H**, remove it.

Do **DFS** from vertex **F** remove it.

SCC computed: \{G\}, \{H\}, \{F, B, E\}

SCC computed: \{G\}, \{H\}

Sariel (UIUC) CS473 Spring 2011 34 / 49
Linear Time Algorithm: An Example

Removing connected components: 4

Do **DFS** from vertex **F**
Remove visited vertices: \{F, B, E\}.

SCC computed: \{G\}, \{H\}, \{F, B, E\}

Final result

SCC computed: \{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}
Which is the correct answer!
Obtaining the meta-graph from strong connected components

Exercise: Given all the strong connected components of a directed graph $G = (V, E)$ show that the meta-graph G^{SCC} can be obtained in $O(m + n)$ time.

Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider $DFS(G^{rev})$ and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
- Assume without loss of generality that $\text{post}(u_k) \geq \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and $DFS(u_k)$ will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and $DFS(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Part III

An Application to make

make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them
An Example makefile

```
project: main.o utils.o command.o
    cc -o project main.o utils.o command.o

main.o: main.c defs.h
    cc -c main.c
utils.o: utils.c defs.h command.h
    cc -c utils.c
command.o: command.c defs.h command.h
    cc -c command.c
```

makefile as a Digraph

```
main.c -> main.o
utils.c -> utils.o -> project
    -> main.o
    -> defs.h
    --> utils.o
    --> command.o
    --> command.c
```
Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.
Take away Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{sc} give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).