
Algorithms Lecture 15: Minimum Spanning Trees

We must all hang together, gentlemen, or else we shall most assuredly
hang separately.

— Benjamin Franklin, at the signing of the
Declaration of Independence (July 4, 1776)

It is a very sad thing that nowadays there is so little useless information.

— Oscar Wilde

A ship in port is safe, but that is not what ships are for.

— Rear Admiral Grace Murray Hopper

15 Minimum Spanning Trees

15.1 Introduction

Suppose we are given a connected, undirected, weighted graph. This is a graph G = (V, E) together with
a function w : E→ IR that assigns a weight w(e) to each edge e. For this lecture, we’ll assume that the
weights are real numbers. Our task is to find the minimum spanning tree of G, i.e., the spanning tree T
minimizing the function

w(T) =
∑

e∈T

w(e).

To keep things simple, I’ll assume that all the edge weights are distinct: w(e) 6= w(e′) for any pair of
edges e and e′. Distinct weights guarantee that the minimum spanning tree of the graph is unique.
Without this condition, there may be several different minimum spanning trees. For example, if all the
edges have weight 1, then every spanning tree is a minimum spanning tree with weight V − 1.

8 5
10

2 3

18 16
12

14

30

4 26

A weighted graph and its minimum spanning tree.

If we have an algorithm that assumes the edge weights are unique, we can still use it on graphs
where multiple edges have the same weight, as long as we have a consistent method for breaking ties.
One way to break ties consistently is to use the following algorithm in place of a simple comparison.
SHORTEREDGE takes as input four integers i, j, k, l, and decides which of the two edges (i, j) and (k, l)
has ‘smaller’ weight.

SHORTEREDGE(i, j, k, l)
if w(i, j)< w(k, l) return (i, j)
if w(i, j)> w(k, l) return (k, l)
if min(i, j)<min(k, l) return (i, j)
if min(i, j)>min(k, l) return (k, l)
if max(i, j)<max(k, l) return (i, j)
〈〈if max(i,j) < max(k,l) 〉〉 return (k, l)

1

Algorithms Lecture 15: Minimum Spanning Trees

15.2 The Only Minimum Spanning Tree Algorithm

There are several different methods for computing minimum spanning trees, but really they are all
instances of the following generic algorithm. The situation is similar to the previous lecture, where we
saw that depth-first search and breadth-first search were both instances of a single generic traversal
algorithm.

The generic minimum spanning tree algorithm maintains an acyclic subgraph F of the input graph G,
which we will call an intermediate spanning forest. F is a subgraph of the minimum spanning tree of G,
and every component of F is a minimum spanning tree of its vertices. Initially, F consists of n one-node
trees. The generic algorithm merges trees together by adding certain edges between them. When the
algorithm halts, F consists of a single n-node tree, which must be the minimum spanning tree. Obviously,
we have to be careful about which edges we add to the evolving forest, since not every edge is in the
minimum spanning tree.

The intermediate spanning forest F induces two special types of edges. An edge is useless if it is not
an edge of F , but both its endpoints are in the same component of F . For each component of F , we
associate a safe edge—the minimum-weight edge with exactly one endpoint in that component. Different
components might or might not have different safe edges. Some edges are neither safe nor useless—we
call these edges undecided.

All minimum spanning tree algorithms are based on two simple observations.

Lemma 1. The minimum spanning tree contains every safe edge and no useless edges.1

Proof: Let T be the minimum spanning tree. Suppose F has a ‘bad’ component whose safe edge
e = (u, v) is not in T . Since T is connected, it contains a unique path from u to v, and at least one edge e′

on this path has exactly one endpoint in the bad component. Removing e′ from the minimum spanning
tree and adding e gives us a new spanning tree. Since e is the bad component’s safe edge, we have
w(e′)> w(e), so the the new spanning tree has smaller total weight than T . But this is impossible—T is
the minimum spanning tree. So T must contain every safe edge.

Adding any useless edge to F would introduce a cycle. �

u
v

e

e’

Proving that every safe edge is in the minimum spanning tree. The ‘bad’ component of F is highlighted.

So our generic minimum spanning tree algorithm repeatedly adds one or more safe edges to the
evolving forest F . Whenever we add new edges to F , some undecided edges become safe, and others
become useless. To specify a particular algorithm, we must decide which safe edges to add, and how to
identify new safe and new useless edges, at each iteration of our generic template.

1This lemma is actually a special case of two more general theorems. First, for any partition of the vertices of G into two
disjoint subsets, the minimum-weight edge with one endpoint in each subset is in the minimum spanning tree. Second, the
maximum-weight edge in any cycle in G is not in the minimum spanning tree.

2

Algorithms Lecture 15: Minimum Spanning Trees

15.3 Boru̇vka’s Algorithm

The oldest and arguably simplest minimum spanning tree algorithm was discovered by Boru̇vka in 1926,
long before computers even existed, and practically before the invention of graph theory!2 The algorithm
was rediscovered by Choquet in 1938; again by Florek, Łukaziewicz, Perkal, Stienhaus, and Zubrzycki in
1951; and again by Sollin some time in the early 1960s. Because Sollin was the only Western computer
scientist in this list—Choquet was a civil engineer; Florek and his co-authors were anthropologists—this
is often called ‘Sollin’s algorithm’, especially in the parallel computing literature.

The Boru̇vka/Choquet/Florek/Łukaziewicz/Perkal/Stienhaus/Zubrzycki/Sollin algorithm can be
summarized in one line:

BORU̇VKA: Add all the safe edges and recurse.

8 5
10

2 3

18 16
12

14

30

4 26

18
12

14

26

Boru̇vka’s algorithm run on the example graph. Thick edges are in F .
Arrows point along each component’s safe edge. Dashed edges are useless.

At the beginning of each phase of the Boru̇vka algorithm, each component elects an arbitrary ‘leader’
node. The simplest way to hold these elections is a depth-first search of F ; the first node we visit in any
component is that component’s leader. Once the leaders are elected, we find the safe edges for each
component, essentially by brute force. Finally, we add these safe edges to F .

BORU̇VKA(V, E):
F = (V,∅)
while F has more than one component

choose leaders using DFS
FINDSAFEEDGES(V, E)
for each leader v

add safe(v) to F

FINDSAFEEDGES(V, E):
for each leader v

safe(v)←∞
for each edge (u, v) ∈ E

u← leader(u)
v← leader(v)
if u 6= v

if w(u, v)< w(safe(u))
safe(u)← (u, v)

if w(u, v)< w(safe(v))
safe(v)← (u, v)

Each call to FINDSAFEEDGES takes O(E) time, since it examines every edge. Since the graph is
connected, it has at most E + 1 vertices. Thus, each iteration of the while loop in BORU̇VKA takes O(E)
time, assuming the graph is represented by an adjacency list. Each iteration also reduces the number of
components of F by at least a factor of two—the worst case occurs when the components coalesce in
pairs. Since there are initially V components, the while loop iterates O(log V) times. Thus, the overall
running time of Boru̇vka’s algorithm is O(E log V).

Despite its relatively obscure origin, early algorithms researchers were aware of Boru̇vka’s algorithm,
but dismissed it as being ‘too complicated’! As a result, despite its simplicity and efficiency, Boru̇vka’s
algorithm is rarely mentioned in algorithms and data structures textbooks. On the other hand, more

2Leonard Euler published the first graph theory result, his famous theorem about the bridges of Königsburg, in 1736.
However, the first textbook on graph theory, written by Dénes König, was not published until 1936.

3

Algorithms Lecture 15: Minimum Spanning Trees

recent algorithms to compute minimum spanning trees are all generalizations of Boru̇vka’s algorithm,
not the other two classical algorithms described next.

15.4 Jarník’s (‘Prim’s’) Algorithm

The next oldest minimum spanning tree algorithm was first described by the Polish mathematician
Vojtěch Jarník in a 1929 letter to Boru̇vka. The algorithm was independently rediscovered by Kruskal in
1956, by Prim in 1957, by Loberman and Weinberger in 1957, and finally by Dijkstra in 1958. Prim,
Loberman, Weinberger, and Dijkstra all (eventually) knew of and even cited Kruskal’s paper, but since
Kruskal also described two other minimum-spanning-tree algorithms in the same paper, this algorithm is
usually (incorrectly) called ‘Prim’s algorithm’, or sometimes even ‘the Prim/Dijkstra algorithm’, even
though by 1958 Dijkstra already had another algorithm (inappropriately) named after him.

In Jarník’s algorithm, the forest F contains only one nontrivial component T ; all the other components
are isolated vertices. Initially, T consists of an arbitrary vertex of the graph. The algorithm repeats the
following step until T spans the whole graph:

JARNÍK: Find T ’s safe edge and add it to T .

8 5
10

2 3

18 16
12

14

30

4 26

18

8 5
10

2 3

16
12

14

30

26

8 5
10

2 3

18 16
30

26

8 5
10

3

16
30

26

8 5

16
30

26

16
30

26

Jarník’s algorithm run on the example graph, starting with the bottom vertex.
At each stage, thick edges are in T , an arrow points along T ’s safe edge, and dashed edges are useless.

To implement Jarník’s algorithm, we keep all the edges adjacent to T in a heap. When we pull the
minimum-weight edge off the heap, we first check whether both of its endpoints are in T . If not, we add
the edge to T and then add the new neighboring edges to the heap. In other words, Jarník’s algorithm
is just another instance of the generic graph traversal algorithm we saw last time, using a heap as the
‘bag’! If we implement the algorithm this way, its running time is O(E log E) = O(E log V).

However, we can speed up the implementation by observing that the graph traversal algorithm visits
each vertex only once. Rather than keeping edges in the heap, we can keep a heap of vertices, where the
key of each vertex v is the length of the minimum-weight edge between v and T (or∞ if there is no
such edge). Each time we add a new edge to T , we may need to decrease the key of some neighboring
vertices.

To make the description easier, we break the algorithm into two parts. JARNÍKINIT initializes the
vertex heap. JARNÍKLOOP is the main algorithm. The input consists of the vertices and edges of the graph,
plus the start vertex s.

4

Algorithms Lecture 15: Minimum Spanning Trees

JARNÍK(V, E, s):
JARNÍKINIT(V, E, s)
JARNÍKLOOP(V, E, s)

JARNÍKINIT(V, E, s):
for each vertex v ∈ V \ {s}

if (v, s) ∈ E
edge(v)← (v, s)
key(v)← w(v, s)

else
edge(v)← NULL

key(v)←∞
INSERT(v)

JARNÍKLOOP(V, E, s):
T ← ({s},∅)
for i← 1 to |V | − 1

v← EXTRACTMIN

add v and edge(v) to T
for each edge (u, v) ∈ E

if u /∈ T and key(u)> w(u, v)
edge(u)← (u, v)
DECREASEKEY(u, w(u, v))

The running time of JARNÍK is dominated by the cost of the heap operations INSERT, EXTRACTMIN, and
DECREASEKEY. INSERT and EXTRACTMIN are each called O(V) times once for each vertex except s, and
DECREASEKEY is called O(E) times, at most twice for each edge. If we use a standard binary heap, each
of these operations requires O(log V) time, so the overall running time of JARNÍK is O((V + E) log V) =
O(E log V). The running time can be improved to O(E+V log V) using a data structure called a Fibonacci
heap, which supports INSERT and DECREASEKEY in constant amortized time; this is faster than Boru̇vka’s
algorithm unless E = O(V).

15.5 Kruskal’s Algorithm

The last minimum spanning tree algorithm I’ll discuss was first described by Kruskal in 1956, in the same
paper where he rediscovered Jarnik’s algorithm. Kruskal was motivated by ‘a typewritten translation
(of obscure origin)’ of Boru̇vka’s original paper, claiming that Boru̇vka’s algorithm was ‘unnecessarily
elaborate’.3 This algorithm was also rediscovered in 1957 by Loberman and Weinberger, but somehow
avoided being renamed after them.

KRUSKAL: Scan all edges in increasing weight order; if an edge is safe, add it to F .

8 5
10

2 3

18 16
12

14

30

4 26

8 5
10

3

18 16
12

14

30

4 26

8 5
10

18 16
12

14

30

4 26

8 5
10

18 16
12

14

30

26

18

8
10

16
12

14

30

26

10

16
12

14

30

26

16
12

14

30

26

181816

14

30

26

1816
30

26

18

30

26

18
30

26

30

Kruskal’s algorithm run on the example graph. Thick edges are in F . Dashed edges are useless.

3To be fair, Boru̇vka’s original paper was unnecessarily elaborate, but in his followup paper, also published in 1927, simplified
his algorithm to its current modern form. Kruskal was apparently unaware of Boru̇vka’s second paper. Stupid Iron Curtain.

5

Algorithms Lecture 15: Minimum Spanning Trees

Since we examine the edges in order from lightest to heaviest, any edge we examine is safe if and
only if its endpoints are in different components of the forest F . To prove this, suppose the edge e joins
two components A and B but is not safe. Then there would be a lighter edge e′ with exactly one endpoint
in A. But this is impossible, because (inductively) any previously examined edge has both endpoints in
the same component of F .

Just as in Boru̇vka’s algorithm, each component of F has a ‘leader’ node. An edge joins two
components of F if and only if the two endpoints have different leaders. But unlike Boru̇vka’s algorithm,
we do not recompute leaders from scratch every time we add an edge. Instead, when two components
are joined, the two leaders duke it out in a nationally-televised no-holds-barred steel-cage grudge
match.4 One of the two emerges victorious as the leader of the new larger component. More formally,
we will use our earlier algorithms for the UNION-FIND problem, where the vertices are the elements and
the components of F are the sets. Here’s a more formal description of the algorithm:

KRUSKAL(V, E):
sort E by wieght
F ←∅
for each vertex v ∈ V

MAKESET(v)

for i← 1 to |E|
(u, v)← ith lightest edge in E
if FIND(u) 6= FIND(v)

UNION(u, v)
add (u, v) to F

return F

In our case, the sets are components of F , and n = V . Kruskal’s algorithm performs O(E) FIND

operations, two for each edge in the graph, and O(V) UNION operations, one for each edge in the
minimum spanning tree. Using union-by-rank and path compression allows us to perform each UNION or
FIND in O(α(E, V)) time, where α is the not-quite-constant inverse-Ackerman function. So ignoring the
cost of sorting the edges, the running time of this algorithm is O(Eα(E, V)).

We need O(E log E) = O(E log V) additional time just to sort the edges. Since this is bigger than the
time for the UNION-FIND data structure, the overall running time of Kruskal’s algorithm is O(E log V),
exactly the same as Boru̇vka’s algorithm, or Jarník’s algorithm with a normal (non-Fibonacci) heap.

4Live at the Assembly Hall! Only $49.95 on Pay-Per-View!

6

Algorithms Lecture 15: Minimum Spanning Trees

Exercises

1. Most classical minimum-spanning-tree algorithms use the notions of ‘safe’ and ‘useless’ edges
described in the lecture notes, but there is an alternate formulation. Let G be a weighted undirected
graph, where the edge weights are distinct. We say that an edge e is dangerous if it is the longest
edge in some cycle in G, and useful if it does not lie in any cycle in G.

(a) Prove that the minimum spanning tree of G contains every useful edge.

(b) Prove that the minimum spanning tree of G does not contain any dangerous edge.

(c) Describe and analyze an efficient implementation of the “anti-Kruskal” MST algorithm:
Examine the edges of G in decreasing order; if an edge is dangerous, remove it from G. [Hint:
It won’t be as fast as Kruskal’s algorithm.]

2. Let G = (V, E) be an arbitrary connected graph with weighted edges.

(a) Prove that for any partition of the vertices V into two subsets, the minimum-weight edge
with one endpoint in each subset is in the minimum spanning tree of G.

(b) Prove that the maximum-weight edge in any cycle of G is not in the minimum spanning tree
of G.

(c) Prove or disprove: The minimum spanning tree of G includes the minimum-weighted edge
in every cycle in G.

3. Throughout this lecture note, we assumed that no two edges in the input graph have equal weights,
which implies that the minimum spanning tree is unique. In fact, a weaker condition on the edge
weights implies MST uniqueness.

(a) Describe an edge-weighted graph that has a unique minimum spanning tree, even though
two edges have equal weights.

(b) Prove that an edge-weighted graph G has a unique minimum spanning tree if and only if the
following conditions hold:

• For any partition of the vertices of G into two subsets, the minimum-weight edge with
one endpoint in each subset is unique.

• The maximum-weight edge in any cycle of G is unique.

(c) Describe and analyze an algorithm to determine whether or not a graph has a unique
minimum spanning tree.

4. Suppose you are given a graph G with weighted edges and a minimum spanning tree T of G.

(a) Describe an algorithm to update the minimum spanning tree when the weight of a single
edge e is decreased.

(b) Describe an algorithm to update the minimum spanning tree when the weight of a single
edge e is increased.

In both cases, the input to your algorithm is the edge e and its new weight; your algorithms should
modify T so that it is still a minimum spanning tree. [Hint: Consider the cases e ∈ T and e 6∈ T
separately.]

7

Algorithms Lecture 15: Minimum Spanning Trees

5. Consider a path between two vertices s and t in an undirected weighted graph G. The bottleneck
length of this path is the maximum weight of any edge in the path. The bottleneck distance between
s and t is the minimum bottleneck length of any path from s to t. (If there are no paths from s
to t, the bottleneck distance between s and t is∞.)

s

t

1 11

7

128

5
10

9

2

3
6

4

The bottleneck distance between s and t is 5.

Describe and analyze an algorithm to compute the bottleneck distance between every pair of
vertices in an arbitrary undirected weighted graph. Assume that no two edges have the same
weight.

6. (a) Describe and analyze and algorithm to find the second smallest spanning tree of a given
graph G, that is, the spanning tree of G with smallest total weight except for the minimum
spanning tree.

(b) Describe and analyze an efficient algorithm to compute, given a weighted undirected graph G
and an integer k, the k spanning trees of G with smallest weight.

7. We say that a graph G = (V, E) is dense if E = Θ(V 2). Describe a modification of Jarník’s minimum-
spanning tree algorithm that runs in O(V 2) time (independent of E) when the input graph is
dense, using only simple data structures (and in particular, without using a Fibonacci heap).

8. (a) Prove that the minimum spanning tree of a graph is also a spanning tree whose maximum-
weight edge is minimal.

(b) Describe an algorithm to compute a spanning tree whose maximum-weight edge is minimal,
in O(V + E) time. [Hint: Start by computing the median of the edge weights.]

9. Consider an algorithm that first performs k passes of Boru̇vka’s algorithm, and then runs Jarník’s
algorithm (with a Fibonacci heap) on the resulting contracted graph.

(a) What is the running time of this hybrid algorithm, as a function of V , E, and k?

(b) For which value of k is this running time minimized? What is the resulting running time?

10. Describe an algorithm to compute the minimum spanning tree of an n-vertex planar graph in O(n)
time. [Hint: Contracting an edge in a planar graph yields another planar graph. Any planar graph
with n vertices has at most 3n− 6 edges.]

8

