Algorithms Lecture 14: Basic Graph Properties

Obie looked at the seein’ eye dog. Then at the twenty-seven 8 by 10 color glossy pictures with
the circles and arrows and a paragraph on the back of each one. .. and then he looked at the
seein’ eye dog. And then at the twenty-seven 8 by 10 color glossy pictures with the circles
and arrows and a paragraph on the back of each one and began to cry.

Because Obie came to the realization that it was a typical case of American blind justice,
and there wasn’t nothin’ he could do about it, and the judge wasn’t gonna look at the twenty-
seven 8 by 10 color glossy pictures with the circles and arrows and a paragraph on the back of
each one explainin’ what each one was, to be used as evidence against us.

And we was fined fifty dollars and had to pick up the garbage. In the snow.

But that’s not what I’'m here to tell you about.
— Arlo Guthrie, “Alice’s Restaurant” (1966)

| study my Bible as | gather apples.

first | shake the whole tree, that the ripest might fall.
Then | climb the tree and shake each limb,

and then each branch and then each twig,

and then | look under each leaf.

— Martin Luther

14 Basic Graph Properties

14.1 Definitions

A graph G is a pair of sets (V, E). V is a set of arbitrary objects that we call verticef] or nodes. E is a set
of vertex pairs, which we call edges or occasionally arcs. In an undirected graph, the edges are unordered
pairs, or just sets of two vertices. In a directed graph, the edges are ordered pairs of vertices. We will
only be concerned with simple graphs, where there is no edge from a vertex to itself and there is at most
one edge from any vertex to any other.

Following standard (but admittedly confusing) practice, I'll also use V to denote the number of
vertices in a graph, and E to denote the number of edges. Thus, in an undirected graph, we have
0<EZ (‘2/), and in a directed graph, 0 < E <V(V —1).

We usually visualize graphs by looking at an embedding. An embedding of a graph maps each vertex
to a point in the plane and each edge to a curve or straight line segment between the two vertices.
A graph is planar if it has an embedding where no two edges cross. The same graph can have many
different embeddings, so it is important not to confuse a particular embedding with the graph itself. In
particular, planar graphs can have non-planar embeddings!

A non-planar embedding of a planar graph with nine vertices, thirteen edges, and two connected components,
and a planar embedding of the same graph.

IThe singular of ‘vertices’ is vertex. The singular of ‘matrices’ is matrix. Unless you’re speaking Italian, there is no such
thing as a vertice, a matrice, an indice, an appendice, a helice, an apice, a vortice, a radice, a simplice, a codice, a directrice, a
dominatrice, a Unice, a Kleenice, an Asterice, an Obelice, a Dogmatice, a Getafice, a Cacofonice, a Vitalstatistice, a Geriatrice,
or Jimi Hendrice! You will lose points for using any of these so-called words.

Algorithms Lecture 14: Basic Graph Properties

There are other ways of visualizing and representing graphs that are sometimes also useful. For
example, the intersection graph of a collection of objects has a node for every object and an edge for
every intersecting pair. Whether a particular graph can be represented as an intersection graph depends
on what kind of object you want to use for the vertices. Different types of objects—line segments,
rectangles, circles, etc.—define different classes of graphs. One particularly useful type of intersection
graph is an interval graph, whose vertices are intervals on the real line, with an edge between any two
intervals that overlap.

d e
f

b d h

Ca g h f .

—_—
f g
b : e b
i e
C e | e
(a) (b)

=S
(c)

The example graph is also the intersection graph of (a) a set of line segments, (b) a set of circles,
or (c) a set of intervals on the real line (stacked for visibility).

If (u,v) is an edge in an undirected graph, then u is a neighbor or v and vice versa. The degree of
a node is the number of neighbors. In directed graphs, we have two kinds of neighbors. If u —» v is a
directed edge, then u is a predecessor of v and v is a successor of u. The in-degree of a node is the number
of predecessors, which is the same as the number of edges going into the node. The out-degree is the
number of successors, or the number of edges going out of the node.

A graph G’ = (V/,E’) is a subgraph of G = (V,E)if V' CV and E' CE.

A path is a sequence of edges, where each successive pair of edges shares a vertex, and all other edges
are disjoint. A graph is connected if there is a path from any vertex to any other vertex. A disconnected
graph consists of several connected components, which are maximal connected subgraphs. Two vertices
are in the same connected component if and only if there is a path between them.

A cycle is a path that starts and ends at the same vertex, and has at least one edge. A graph is acyclic
if no subgraph is a cycle; acyclic graphs are also called forests. Trees are special graphs that can be
defined in several different ways. You can easily prove by induction (hint, hint, hint) that the following
definitions are equivalent.

e A tree is a connected acyclic graph.

e A tree is a connected component of a forest.

e A tree is a connected graph with at most V — 1 edges.

e A tree is a minimal connected graph; removing any edge makes the graph disconnected.

e A tree is an acyclic graph with at least V — 1 edges.

e A tree is a maximal acyclic graph; adding an edge between any two vertices creates a cycle.

A spanning tree of a graph G is a subgraph that is a tree and contains every vertex of G. Of course, a
graph can only have a spanning tree if it’s connected. A spanning forest of G is a collection of spanning
trees, one for each connected component of G.

Algorithms Lecture 14: Basic Graph Properties

14.2 Explicit Representations of Graphs

There are two common data structures used to explicitly represent graphs: adjacency matricesE] and
adjacency lists.

The adjacency matrix of a graph G is a V X V matrix of indicator variables. Each entry in the matrix
indicates whether a particular edge is or is not in the graph:

Ali,j1=[0,j)€E].

For undirected graphs, the adjacency matrix is always symmetric: A[i, j] = A[j,i]. Since we don’t allow
edges from a vertex to itself, the diagonal elements A[i,i] are all zeros.

Given an adjacency matrix, we can decide in ©(1) time whether two vertices are connected by an
edge just by looking in the appropriate slot in the matrix. We can also list all the neighbors of a vertex
in ©(V) time by scanning the corresponding row (or column). This is optimal in the worst case, since
a vertex can have up to V — 1 neighbors; however, if a vertex has few neighbors, we may still have
to examine every entry in the row to see them all. Similarly, adjacency matrices require ©(V?) space,
regardless of how many edges the graph actually has, so it is only space-efficient for very dense graphs.

abcdefghi -
2011000000 | a~{bj+[c]
b[101110000 b2 [d]{e]
¢|110110000 ¢ —~{al+{bj-{d}--e]
d|011011000 | d—~b] €]
¢[011101000 | e—b] d]
£l000110000 f {dH{e]
¢/000000010 9 —{h~{i]
(000000101 h —~{gl+{]
1000000110 i 19

Adjacency matrix and adjacency list representations for the example graph.

For sparse graphs—graphs with relatively few edges—we’re better off using adjacency lists. An
adjacency list is an array of linked lists, one list per vertex. Each linked list stores the neighbors of the
corresponding vertex.

For undirected graphs, each edge (u,v) is stored twice, once in u’s neighbor list and once in v’s
neighbor list; for directed graphs, each edge is stores only once. Either way, the overall space required
for an adjacency list is O(V +E). Listing the neighbors of a node v takes O(1+deg(v)) time; just scan the
neighbor list. Similarly, we can determine whether (u, v) is an edge in O(1 + deg(u)) time by scanning
the neighbor list of u. For undirected graphs, we can speed up the search by simultaneously scanning
the neighbor lists of both u and v, stopping either we locate the edge or when we fall of the end of a list.
This takes O(1 + min{deg(u), deg(v)}) time.

The adjacency list structure should immediately remind you of hash tables with chaining. Just as
with hash tables, we can make adjacency list structure more efficient by using something besides a
linked list to store the neighbors. For example, if we use a hash table with constant load factor, when
we can detect edges in O(1) expected time, just as with an adjacency list. In practice, this will only be
useful for vertices with large degree, since the constant overhead in both the space and search time is
larger for hash tables than for simple linked lists.

You might at this point ask why anyone would ever use an adjacency matrix. After all, if you use hash
tables to store the neighbors of each vertex, you can do everything as fast or faster with an adjacency list
as with an adjacency matrix, only using less space. The answer is that many graphs are only represented

2See footnote 1.

Algorithms Lecture 14: Basic Graph Properties

implicitly. For example, intersection graphs are usually represented implicitly by simply storing the list
of objects. As long as we can test whether two objects overlap in constant time, we can apply any graph
algorithm to an intersection graph by pretending that it is stored explicitly as an adjacency matrix. On
the other hand, any data structure build from records with pointers between them can be seen as a
directed graph. Algorithms for searching graphs can be applied to these data structures by pretending
that the graph is represented explicitly using an adjacency list.

To keep things simple, we'll consider only undirected graphs for the rest of this lecture, although the
algorithms I'll describe also work for directed graphs.

14.3 Traversing connected graphs

Suppose we want to visit every node in a connected graph (represented either explicitly or implicitly).
The simplest method to do this is an algorithm called depth-first search, which can be written either
recursively or iteratively. It’s exactly the same algorithm either way; the only difference is that we can
actually see the ‘recursion’ stack in the non-recursive version. Both versions are initially passed a source
vertex s.

ITERATIVEDFS(s):
RECURSIVEDFS(v): PUS.H(S)

— while stack not empty
if v is unmarked

mark v v < Por

if v is unmarked
for each edge (v,w) mark v
RECURSIVEDFS(w) for each edge (v, w)
PusH(w)

Depth-first search is one (perhaps the most common) instance of a general family of graph traversal
algorithms. The generic graph traversal algorithm stores a set of candidate edges in some data structure
that I'll call a ‘bag’. The only important properties of a ‘bag’ are that we can put stuff into it and then
later take stuff back out. (In C++ terms, think of the ‘bag’ as a template for a real data structure.) Here’s
the algorithm:

TRAVERSE(S):
put (@,s) in bag
while the bag is not empty
take (p,v) from the bag *)
if v is unmarked
mark v
parent(v) < p
for each edge (v,w) @)
put (v,w) into the bag (xx)

Notice that we're keeping edges in the bag instead of vertices. This is because we want to remember,
whenever we visit a vertex v for the first time, which previously-visited vertex p put v into the bag. The
vertex p is called the parent of v.

Lemma 1. TRAVERSE(s) marks every vertex in any connected graph exactly once, and the set of edges
(v, parent(v)) with parent(v) # @ form a spanning tree of the graph.

Proof: first, it should be obvious that no node is marked more than once.

Algorithms Lecture 14: Basic Graph Properties

Clearly, the algorithm marks s. Let v # s be a vertex, and let s — - -+ — u — v be the path from s to v
with the minimum number of edges. Since the graph is connected, such a path always exists. (If s and v
are neighbors, then u =s, and the path has just one edge.) If the algorithm marks u, then it must put
(u,v) into the bag, so it must later take (u, v) out of the bag, at which point v must be marked (if it isn’t
already). Thus, by induction on the shortest-path distance from s, the algorithm marks every vertex in
the graph.

Call an edge (v, parent(v)) with parent(v) # @ a parent edge. For any node v, the path of parent
edges v — parent(v) — parent(parent(v)) — - -- eventually leads back to s, so the set of parent edges
form a connected graph. Clearly, both endpoints of every parent edge are marked, and the number of
parent edges is exactly one less than the number of vertices. Thus, the parent edges form a spanning
tree. O

The exact running time of the traversal algorithm depends on how the graph is represented and
what data structure is used as the ‘bag’, but we can make a few general observations. Since each vertex
is visited at most once, the for loop (1) is executed at most V times. Each edge is put into the bag exactly
twice; once as (u,v) and once as (v,u), so line (xx) is executed at most 2E times. finally, since we can’t
take more things out of the bag than we put in, line (x) is executed at most 2E + 1 times.

14.4 Examples

Let’s first assume that the graph is represented by an adjacency list, so that the overhead of the for
loop () is only a constant per edge.

o If we implement the ‘bag’ by using a stack, we have depth-first search. Each execution of (%)
or (**) takes constant time, so the overall running time is O(V + E). Since the graph is connected,
V < E+1, so we can simplify the running time to O(E). The spanning tree formed by the parent
edges is called a depth-first spanning tree. The exact shape of the tree depends on the order in
which neighbor edges are pushed onto the stack, but the in general, depth-first spanning trees are
long and skinny.

e If we use a queue instead of a stack, we have breadth-first search. Again, each execution of (x)
or (xx) takes constant time, so the overall running time is still O(E). In this case, the breadth-first
spanning tree formed by the parent edges contains shortest paths from the start vertex s to every
other vertex in its connected component. The exact shape of the breadth-first spanning tree
depends on the order in which neighbor edges are pushed onto the queue, but the in general,
shortest path trees are short and bushy. We’ll see shortest paths again in a future lecture.

A depth-first spanning tree and a breadth-first spanning tree
of one component of the example graph, with start vertex a.

e Suppose the edges of the graph are weighted. If we implement the ‘bag’ using a priority queue,
always extracting the minimum-weight edge in line (%), then we we have what might be called
shortest-first search. In this case, each execution of (x) or (x*) takes O(log E) time, so the overall
running time is O(V + Elog E), which simplifies to O(E log E) if the graph is connected. For this

Algorithms Lecture 14: Basic Graph Properties

algorithm, the set of parent edges form the minimum spanning tree of the connected component
of s. We’ll see minimum spanning trees again in the next lecture.

If the graph is represented using an adjacency matrix instead of an adjacency list, finding all the
neighbors of each vertex in line (1) takes O(V) time. Thus, depth- and breadth-first search each take
O(V?) time overall, and ‘shortest-first search’ takes O(V2 + Elog E) = O(V?1log V) time overall.

14.5 Searching disconnected graphs

If the graph is disconnected, then TRAVERSE(s) only visits the nodes in the connected component of the
start vertex s. If we want to visit all the nodes in every component, we can use the following ‘wrapper’
around our generic traversal algorithm. Since TRAVERSE computes a spanning tree of one component,
TRAVERSEALL computes a spanning forest of the entire graph.

TRAVERSEALL(S):
for all vertices v
if v is unmarked
TRAVERSE(V)

Exercises

1. Prove that the following definitions are all equivalent.

e A tree is a connected acyclic graph.

e A tree is a connected component of a forest.

A tree is a connected graph with at most V — 1 edges.

A tree is a minimal connected graph; removing any edge makes the graph disconnected.

A tree is an acyclic graph with at least V — 1 edges.

A tree is a maximal acyclic graph; adding an edge between any two vertices creates a cycle.

2. Prove that any connected acyclic graph with n > 2 vertices has at least two vertices with degree
1. Do not use the words ‘tree’ of ‘leaf’, or any well-known properties of trees; your proof should
follow entirely from the definitions.

3. Whenever groups of pigeons gather, they instinctively establish a pecking order. For any pair
of pigeons, one pigeon always pecks the other, driving it away from food or potential mates.
The same pair of pigeons always chooses the same pecking order, even after years of separation,
no matter what other pigeons are around. Surprisingly, the overall pecking order can contain
cycles—for example, pigeon A pecks pigeon B, which pecks pigeon C, which pecks pigeon A.

Prove that any finite set of pigeons can be arranged in a row from left to right so that every
pigeon pecks the pigeon immediately to its left. Pretty please.

4. (a) Describe an algorithm to decide whether a directed graph, represented as an adjacency
matrix, contains a sink, that is, a vertex with in-degree V?1.

Algorithms Lecture 14: Basic Graph Properties

*(b) A scorpion is an undirected graph containing a vertex of degree 1 (the sting) connected to
a vertex of degree 2 (the tail) connected to a vertex of degree V?2 (the body) connected
to the other V?3 vertices (the feet). Some of the feet may also be connected to other feet.
Design an algorithm that decides whether a given adjacency matrix represents a scorpion, by
examining only O(V) of the entries.

(c) Prove that it is impossible to decide whether a given adjacency matrix represents a non-empty
graph in O(V) time.

5. In order to facilitate recompiling programs from multiple source files when only a small number
of files have been updated, there is a UNIX utility called ‘make’ that recompiles only files that
were changed after the most recent compilation and (indirectly) any intermediate files in the
compilation that depend on those that were changed. A Makefile is typically composed of a list of
files that must be compiled. Each file f depends on one or more other files that must be compiled
before f is compiled. Thus a file must be recompiled if a file on which it depends is changed.

Assuming you have a list of which files have been recently changed, as well as a list for each
source file of the files on which it depends.

Design and analyze an efficient algorithm to recompile only the necessary files, given a list of
which files have been recently changed, as well as a list for each source file of the files on which it
depends. Don’t worry about the details of parsing a Makefile.

6. Let G =(V, E) be a given directed graph.

(a) The transitive closure G' is a directed graph with the same vertices as G, that contains any
edge u—v if and only if there is a directed path from u to v in G. Describe an efficient
algorithm to compute the transitive closure of G.

(b) The transitive reduction G is the smallest graph (meaning fewest edges) whose transitive
closure is G*. Describe an efficient algorithm to compute the transitive reduction of G.

7. A graph (V, E) is bipartite if the vertices V can be partitioned into two subsets L and R, such that
every edge has one vertex in L and the other in R.

(a) Prove that every tree is a bipartite graph.

(b) Describe and analyze an efficient algorithm that determines whether a given connected,
undirected graph is bipartite.

8. The d-dimensional hypercube is the graph defined as follows. There are 2d vertices, each labeled
with a different string of d bits. Two vertices are joined by an edge if their labels differ in exactly
one bit.

(a) Recall that a Hamiltonian cycle passes through every vertex in a graph exactly once. Prove
that for all d > 2, the d-dimensional hypercube has a Hamiltonian cycle.

(b) Which hypercubes have an Eulerian circuit (a closed walk that visits every edge exactly
once)? [Hint: This is very easy.]

9. Describe an algorithm that finds a closed walk in a given graph that traverses every edge exactly
once, or correctly reports that no such walk exists.

Algorithms Lecture 14: Basic Graph Properties

*10. Draughts/checkers is a game played on an m x m grid of squares, alternately colored light and
dark. (The game is usually played on an 8 x 8 or 10 x 10 board, but the rules easily generalize to
any board size.) Each dark square is occupied by at most one game piece (usually called a checker
in the U.S.), which is either black or white; light squares are always empty. One player (‘White’)
moves the white pieces; the other (‘Black’) moves the black pieces.

Consider the following simple version of the game, essentially American checkers or British
draughts, but where every piece is a kingE] Pieces can be moved in any of the four diagonal
directions, either one or two steps at a time. On each turn, a player either moves one of her pieces
one step diagonally into an empty square, or makes a series of jumps with one of her checkers. In a
single jump, a piece moves to an empty square two steps away in any diagonal direction, but only
if the intermediate square is occupied by a piece of the opposite color; this enemy piece is captured
and immediately removed from the board. Multiple jumps are allowed in a single turn as long as
they are made by the same piece. A player wins if her opponent has no pieces left on the board.

Describe an algorithm that correctly determines whether White can capture every black piece,
thereby winning the game, in a single turn. The input consists of the width of the board (m), a list
of positions of white pieces, and a list of positions of black pieces. For full credit, your algorithm
should run in O(n) time, where n is the total number of pieces.

oo o .

e e O @ @ ® O 6

4 S ;

OO0 ® N - ’6
o o @ 8 6 0

O @ P
White wins in one turn.

e @ e @

Qo O 0

e @ D e e O e

e @ e e e @
BORORO e e e
Sul mEnEne

White cannot win in one turn from either of these positions.

[Hint: The greedy strategy—make arbitrary jumps until you get stuck—does not always find a
winning sequence of jumps even when one exists. Parity, parity, parity.]

3Most other variants of draughts have ‘flying kings’, which behave very differently than what’s described here.

(© Copyright 2009 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/for the most recent revision.

8

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

	Basic Graph Properties
	Definitions
	Explicit Representations of Graphs
	Traversing connected graphs
	Examples
	Searching disconnected graphs

