
Algorithms Non-Lecture 9: Tail Inequalities

If you hold a cat by the tail
you learn things you cannot learn any other way.

— Mark Twain

9 Tail Inequalities

The simple recursive structure of skip lists made it relatively easy to derive an upper bound on the
expected worst-case search time, by way of a stronger high-probability upper bound on the worst-case
search time. We can prove similar results for treaps, but because of the more complex recursive structure,
we need slightly more sophisticated probabilistic tools. These tools are usually called tail inequalities;
intuitively, they bound the probability that a random variable with a bell-shaped distribution takes a
value in the tails of the distribution, far away from the mean.

9.1 Markov’s Inequality

Perhaps the simplest tail inequality was named after the Russian mathematician Andrey Markov; however,
in strict accordance with Stigler’s Law of Eponymy, it first appeared in the works of Markov’s probability
teacher, Pafnuty Chebyshev.1

Markov’s Inequality. Let X be a non-negative integer random variable. For any t > 0, we have
Pr[X ≥ t]≤ E[X ]/t.

Proof: The inequality follows from the definition of expectation by simple algebraic manipulation.

E[X ] =
∞
∑

k=0

k · Pr[X = k] [definition of E[X ]]

=
∞
∑

k=0

Pr[X ≥ k] [algebra]

≥
t−1
∑

k=0

Pr[X ≥ k] [since t <∞]

≥
t−1
∑

k=0

Pr[X ≥ t] [since k < t]

= t · Pr[X ≥ t] [algebra] �

Unfortunately, the bounds that Markov’s inequality implies (at least directly) are often very weak,
even useless. (For example, Markov’s inequality implies that with high probability, every node in an
n-node treap has depth O(n2 log n). Well, duh!) To get stronger bounds, we need to exploit some
additional structure in our random variables.

1The closely related tail bound traditionally called Chebyshev’s inequality was actually discovered by the French statistician
Irénée-Jules Bienaymé, a friend and colleague of Chebyshev’s.
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9.2 Sums of Indicator Variables

Recall that random variables X1, X2, . . . , Xn are mutually independent if and only if

Pr





n
∧

i=1

(X i = x i)



=
n
∏

i=1

Pr[X i = x i]

for all possible values x1, x2, . . . , xn. For examples, different flips of the same fair coin are mutually
independent, but the number of heads and the number of tails in a sequence of n coin flips are not
independent (since they must add to n). Mutual independence of the X i ’s implies that the expectation of
the product of the X i ’s is equal to the product of the expectations:

E





n
∏

i=1

X i



=
n
∏

i=1

E[X i].

Moreover, if X1, X2, . . . , Xn are independent, then for any function f , the random variables f (X1),
f (X2), . . . , f (Xn) are also mutually independent.

Suppose X =
∑n

i=1 X i is the sum of n mutually independent random indicator variables X i . For each
i, let pi = Pr[X i = 1], and let µ= E[X ] =

∑

i E[X i] =
∑

i pi .

Chernoff Bound (Upper Tail). Pr[X > (1+δ)µ]<

�

eδ

(1+δ)1+δ

�µ

for any δ > 0.

Proof: The proof is fairly long, but it replies on just a few basic components: a clever substitution,
Markov’s inequality, the independence of the X i ’s, The World’s Most Useful Inequality ex > 1+ x , a tiny
bit of calculus, and lots of high-school algebra.

We start by introducing a variable t, whose role will become clear shortly.

Pr[X > (1+δ)µ] = Pr[etX > et(1+δ)µ]

To cut down on the superscripts, I’ll usually write exp(x) instead of ex in the rest of the proof. Now
apply Markov’s inequality to the right side of this equation:

Pr[X > (1+δ)µ]<
E[exp(tX )]

exp(t(1+δ)µ)
.

We can simplify the expectation on the right using the fact that the terms X i are independent.

E[exp(tX )] = E
�

exp
�

t
∑

i

X i

�

�

= E
�

∏

i

exp(tX i)
�

=
∏

i

E[exp(tX i)]

We can bound the individual expectations E
�

etX i
�

using The World’s Most Useful Inequality:

E[exp(tX i)] = pie
t + (1− pi) = 1+ (et − 1)pi < exp

�

(et − 1)pi
�

This inequality gives us a simple upper bound for E[etX ]:

E[exp(tX )]<
∏

i

exp((et − 1)pi)< exp
�
∑

i

(et − 1)pi

�

= exp((et − 1)µ)
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Substituting this back into our original fraction from Markov’s inequality, we obtain

Pr[X > (1+δ)µ]<
E[exp(tX )]

exp(t(1+δ)µ)
<

exp((et − 1)µ)
exp(t(1+δ)µ)

=
�

exp(et − 1− t(1+δ))
�µ

Notice that this last inequality holds for all possible values of t. To obtain the final tail bound, we will
choose t to make this bound as tight as possible. To minimize et −1− t− tδ, we take its derivative with
respect to t and set it to zero:

d

d t
(et − 1− t(1+δ)) = et − 1−δ = 0.

(And you thought calculus would never be useful!) This equation has just one solution t = ln(1+δ).
Plugging this back into our bound gives us

Pr[X > (1+δ)µ]<
�

exp(δ− (1+δ) ln(1+δ))
�µ =

�

eδ

(1+δ)1+δ

�µ

And we’re done! �

This form of the Chernoff bound can be a bit clumsy to use. A more complicated argument gives us
the bound

Pr[X > (1+δ)µ]< e−µδ
2/3 for any 0< δ < 1.

A similar argument gives us an inequality bounding the probability that X is significantly smaller
than its expected value:

Chernoff Bound (Lower Tail). Pr[X < (1−δ)µ]<
�

eδ

(1−δ)1−δ

�µ

< e−µδ
2/2 for any δ > 0.

9.3 Back to Treaps

In our analysis of randomized treaps, we defined the indicator variable Ai
k to have the value 1 if and only

if the node with the ith smallest key (‘node i’) was a proper ancestor of the node with the kth smallest
key (‘node k’). We argued that

Pr[Ai
k = 1] =

[i 6= k]
|k− i|+ 1

,

and from this we concluded that the expected depth of node k is

E[depth(k)] =
n
∑

i=1

Pr[Ai
k = 1] = Hk +Hn−k − 2< 2 ln n.

To prove a worst-case expected bound on the depth of the tree, we need to argue that the maximum
depth of any node is small. Chernoff bounds make this argument easy, once we establish that the
relevant indicator variables are mutually independent.

Lemma 1. For any index k, the k−1 random variables Ai
k with i < k are mutually independent. Similarly,

for any index k, the n− k random variables Ai
k with i > k are mutually independent.
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Proof: To simplify the notation, we explicitly consider only the case k = 1, although the argument
generalizes easily to other values of k. Fix n− 1 arbitrary indicator values x2, x3, . . . , xn. We prove the
lemma by induction on n, with the vacuous base case n= 1. The definition of conditional probability
gives us

Pr





n
∧

i=2

(Ai
1 = x i)



= Pr





n−1
∧

i=2

(Ai
k = x i) ∧ An

1 = xn





= Pr





n−1
∧

i=2

(Ai
k = x i)

�

�

�

�

An
1 = xn



 · Pr
�

An
1 = xn

�

Now recall that An
1 = 1 if and only if node n has the smallest priority, and the other n− 2 indicator

variables Ai
1 depend only on the order of the priorities of nodes 1 through n−1. There are exactly (n−1)!

permutations of the n priorities in which the nth priority is smallest, and each of these permutations is
equally likely. Thus,

Pr





n−1
∧

i=2

(Ai
k = x i)

�

�

�

�

An
1 = xn



= Pr





n−1
∧

i=2

(Ai
k = x i)





The inductive hypothesis implies that the variables A2
1, . . . , An−1

1 are mutually independent, so

Pr





n−1
∧

i=2

(Ai
k = x i)



=
n−1
∏

i=2

Pr
�

Ai
1 = x i

�

.

We conclude that

Pr





n
∧

i=2

(Ai
1 = x i)



= Pr
�

An
1 = xn

�

·
n−1
∏

i=2

Pr
�

Ai
1 = x i

�

=
n−1
∏

i=1

Pr
�

Ai
1 = x i

�

,

or in other words, that the indicator variables are mutually independent. �

Theorem 2. The depth of a randomized treap with n nodes is O(log n) with high probability.

Proof: First let’s bound the probability that the depth of node k is at most 8 ln n. There’s nothing special
about the constant 8 here; I’m being generous to make the analysis easier.

The depth is a sum of n indicator variables Ai
k, as i ranges from 1 to n. Our Observation allows

us to partition these variables into two mutually independent subsets. Let d<(k) =
∑

i<k Ai
k and

d>(k) =
∑

i<k Ai
k, so that depth(k) = d<(k) + d>(k). If depth(k) > 8 ln n, then either d<(k) > 4 ln n or

d>(k)> 4 ln n.
Chernoff’s inequality, with µ = E[d<(k)] = Hk − 1 < ln n and δ = 3, bounds the probability that

d<(k)> 4 ln n as follows.

Pr[d<(k)> 4 ln n]< Pr[d<(k)> 4µ]<

�

e3

44

�µ

<

�

e3

44

�ln n

= nln(e3/44) = n3−4 ln4 <
1

n2 .

(The last step uses the fact that 4 ln4 ≈ 5.54518 > 5.) The same analysis implies that Pr[d>(k) >
4 ln n]< 1/n2. These inequalities imply the crude bound Pr[depth(k)> 4 ln n]< 2/n2.

Now consider the probability that the treap has depth greater than 10 ln n. Even though the
distributions of different nodes’ depths are not independent, we can conservatively bound the probability
of failure as follows:

Pr
�

max
k

depth(k)> 8 ln n
�

= Pr





n
∧

k=1

(depth(k)> 8 ln n)



≤
n
∑

k=1

Pr[depth(k)> 8 ln n]<
2

n
.
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This argument implies more generally that for any constant c, the depth of the treap is greater
than c ln n with probability at most 2/nc ln c−c. We can make the failure probability an arbitrarily small
polynomial by choosing c appropriately. �

This lemma implies that any search, insertion, deletion, or merge operation on an n-node treap
requires O(log n) time with high probability. In particular, the expected worst-case time for each of these
operations is O(log n).

Exercises

1. Prove that for any integer k such that 1 < k < n, the n− 1 indicator variables Ai
k with i 6= k are

not mutually independent. [Hint: Consider the case n= 3.]

2. Recall from Exercise 1 in the previous note that the expected number of descendants of any node
in a treap is O(log n). Why doesn’t the Chernoff-bound argument for depth imply that, with high
probability, every node in a treap has O(log n) descendants? The conclusion is clearly bogus—Every
treap has a node with n descendants!—but what’s the hole in the argument?

3. A heater is a sort of dual treap, in which the priorities of the nodes are given, but their search
keys are generate independently and uniformly from the unit interval [0,1]. You can assume all
priorities and keys are distinct.

(a) Prove that for any r, the node with the rth smallest priority has expected depth O(log r).

(b) Prove that an n-node heater has depth O(log n) with high probability.

(c) Describe algorithms to perform the operations INSERT and DELETEMIN in a heater. What are
the expected worst-case running times of your algorithms? In particular, can you express the
expected running time of INSERT in terms of the priority rank of the newly inserted item?

c© Copyright 2009 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.
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