
Algorithms Lecture 6: Greedy Algorithms

The point is, ladies and gentleman, greed is good. Greed works, greed is right.
Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.
Greed in all its forms, greed for life, money, love, knowledge has marked the
upward surge in mankind. And greed—mark my words—will save not only Teldar
Paper but the other malfunctioning corporation called the USA.

— Michael Douglas as Gordon Gekko, Wall Street (1987)

There is always an easy solution to every human problem—
neat, plausible, and wrong.

— H. L. Mencken, “The Divine Afflatus”,
New York Evening Mail (November 16, 1917)

I love deadlines. I like the whooshing sound they make as they fly by.

— Douglas Adams

6 Greedy Algorithms

6.1 Storing Files on Tape

Suppose we have a set of n files that we want to store on a tape. In the future, users will want to
read those files from the tape. Reading a file from tape isn’t like reading from disk; first we have to
fast-forward past all the other files, and that takes a significant amount of time. Let L[1 .. n] be an array
listing the lengths of each file; specifically, file i has length L[i]. If the files are stored in order from 1 to
n, then the cost of accessing the kth file is

cost(k) =
k
∑

i=1

L[i].

The cost reflects the fact that before we read file k we must first scan past all the earlier files on the tape.
If we assume for the moment that each file is equally likely to be accessed, then the expected cost of
searching for a random file is

E[cost] =
n
∑

k=1

cost(k)
n

=
n
∑

k=1

k
∑

i=1

L[i]
n

.

If we change the order of the files on the tape, we change the cost of accessing the files; some files
become more expensive to read, but others become cheaper. Different file orders are likely to result in
different expected costs. Specifically, let π(i) denote the index of the file stored at position i on the tape.
Then the expected cost of the permutation π is

E[cost(π)] =
n
∑

k=1

k
∑

i=1

L[π(i)]
n

.

Which order should we use if we want the expected cost to be as small as possible? The answer is
intuitively clear; we should store the files in order from shortest to longest. So let’s prove this.

Lemma 1. E[cost(π)] is minimized when L[π(i)]≤ L[π(i+ 1)] for all i.

Proof: Suppose L[π(i)]> L[π(i+ 1)] for some i. To simplify notation, let a = π(i) and b = π(i+ 1).
If we swap files a and b, then the cost of accessing a increases by L[b], and the cost of accessing b
decreases by L[a]. Overall, the swap changes the expected cost by (L[b]− L[a])/n. But this change is
an improvement, because L[b]< L[a]. Thus, if the files are out of order, we can improve the expected
cost by swapping some mis-ordered adjacent pair. �

1

Algorithms Lecture 6: Greedy Algorithms

This example gives us our first greedy algorithm. To minimize the total expected cost of accessing
the files, we put the file that is cheapest to access first, and then recursively write everything else; no
backtracking, no dynamic programming, just make the best local choice and blindly plow ahead. If
we use an efficient sorting algorithm, the running time is clearly O(n log n), plus the time required to
actually write the files. To prove the greedy algorithm is actually correct, we simply prove that the
output of any other algorithm can be improved by some sort of swap.

Let’s generalize this idea further. Suppose we are also given an array f [1 .. n] of access frequencies
for each file; file i will be accessed exactly f [i] times over the lifetime of the tape. Now the total cost of
accessing all the files on the tape is

Σcost(π) =
n
∑

k=1

f [π(k)] ·
k
∑

i=1

L[π(i)]

!

=
n
∑

k=1

k
∑

i=1

�

f [π(k)] · L[π(i)]
�

.

Now what order should store the files if we want to minimize the total cost?
We’ve already proved that if all the frequencies are equal, then we should sort the files by increasing

size. If the frequencies are all different but the file lengths L[i] are all equal, then intuitively, we should
sort the files by decreasing access frequency, with the most-accessed file first. In fact, this is not hard to
prove by modifying the proof of Lemma 1. But what if the sizes and the frequencies are both different?
In this case, we should sort the files by the ratio L/ f .

Lemma 2. Σcost(π) is minimized when
L[π(i)]
F[π(i)]

≤
L[π(i+ 1)]
F[π(i+ 1)]

for all i.

Proof: Suppose L[π(i)]/F[π(i)]> L[π(i+1)]/F[π(i+ i)] for some i. To simplify notation, let a = π(i)
and b = π(i + 1). If we swap files a and b, then the cost of accessing a increases by L[b], and the cost
of accessing b decreases by L[a]. Overall, the swap changes the total cost by L[b]F[a]− L[a]F[a]. But
this change is an improvement, since

L[a]
F[a]

>
L[b]
F[b]

=⇒ L[b]F[a]− L[a]F[a]< 0.

Thus, if the files are out of order, we can improve the total cost by swapping some mis-ordered adjacent
pair. �

6.2 Scheduling Classes

The next example is slightly less trivial. Suppose you decide to drop out of computer science at the last
minute and change your major to Applied Chaos. The Applied Chaos department has all of its classes on
the same day every week, referred to as “Soberday" by the students (but interestingly, not by the faculty).
Every class has a different start time and a different ending time: AC 101 (‘Toilet Paper Landscape
Architecture’) starts at 10:27pm and ends at 11:51pm; AC 666 (‘Immanentizing the Eschaton’) starts
at 4:18pm and ends at 7:06pm, and so on. In the interests of graduating as quickly as possible, you
want to register for as many classes as you can. (Applied Chaos classes don’t require any actual work.)
The University’s registration computer won’t let you register for overlapping classes, and no one in the
department knows how to override this ‘feature’. Which classes should you take?

More formally, suppose you are given two arrays S[1 .. n] and F[1 .. n] listing the start and finish
times of each class. Your task is to choose the largest possible subset X ∈ {1,2, . . . , n} so that for any
pair i, j ∈ X , either S[i]> F[j] or S[j]> F[i]. We can illustrate the problem by drawing each class as a
rectangle whose left and right x-coordinates show the start and finish times. The goal is to find a largest
subset of rectangles that do not overlap vertically.

2

Algorithms Lecture 6: Greedy Algorithms

A maximal conflict-free schedule for a set of classes.

This problem has a fairly simple recursive solution, based on the observation that either you take
class 1 or you don’t. Let B4 be the set of classes that end before class 1 starts, and let L8 be the set of
classes that start later than class 1 ends:

B4 = {i | 2≤ i ≤ n and F[i]< S[1]} L8 = {i | 2≤ i ≤ n and S[i]> F[1]}

If class 1 is in the optimal schedule, then so are the optimal schedules for B4 and L8, which we can find
recursively. If not, we can find the optimal schedule for {2, 3, . . . , n} recursively. So we should try both
choices and take whichever one gives the better schedule. Evaluating this recursive algorithm from the
bottom up gives us a dynamic programming algorithm that runs in O(n2) time. I won’t bother to go
through the details, because we can do better.1

Intuitively, we’d like the first class to finish as early as possible, because that leaves us with the most
remaining classes. If this greedy strategy works, it suggests the following very simple algorithm. Scan
through the classes in order of finish time; whenever you encounter a class that doesn’t conflict with
your latest class so far, take it!

The same classes sorted by finish times and the greedy schedule.

We can write the greedy algorithm somewhat more formally as follows. (Hopefully the first line is
understandable.)

GREEDYSCHEDULE(S[1 .. n], F[1 .. n]):
sort F and permute S to match
count ← 1
X [count]← 1
for i← 2 to n

if S[i]> F[X [count]]
count ← count + 1
X [count]← i

return X [1 .. count]

1But you should still work out the details yourself. The dynamic programming algorithm can be used to find the “best”
schedule for any definition of “best”, but the greedy algorithm I’m about to describe only works that “best” means “biggest”.
Also, you need the practice.

3

Algorithms Lecture 6: Greedy Algorithms

This algorithm clearly runs in O(n log n) time.
To prove that this algorithm actually gives us a maximal conflict-free schedule, we use an exchange

argument, similar to the one we used for tape sorting. We are not claiming that the greedy schedule is
the only maximal schedule; there could be others. (See the figures on the previous page.) All we can
claim is that at least one of the maximal schedules is the one that the greedy algorithm produces.

Lemma 3. At least one maximal conflict-free schedule includes the class that finishes first.

Proof: Let f be the class that finishes first. Suppose we have a maximal conflict-free schedule X that
does not include f . Let g be the first class in X to finish. Since f finishes before g does, f cannot conflict
with any class in the set S \ {g}. Thus, the schedule X ′ = X ∪ { f } \ {g} is also conflict-free. Since X ′ has
the same size as X , it is also maximal. �

To finish the proof, we call on our old friend, induction.

Theorem 4. The greedy schedule is an optimal schedule.

Proof: Let f be the class that finishes first, and let L be the subset of classes the start after f finishes.
The previous lemma implies that some optimal schedule contains f , so the best schedule that contains
f is an optimal schedule. The best schedule that includes f must contain an optimal schedule for the
classes that do not conflict with f , that is, an optimal schedule for L. The greedy algorithm chooses f
and then, by the inductive hypothesis, computes an optimal schedule of classes from L. �

The proof might be easier to understand if we unroll the induction slightly.

Proof: Let 〈g1, g2, . . . , gk〉 be the sequence of classes chosen by the greedy algorithm. Suppose we have
a maximal conflict-free schedule of the form

〈g1, g2, . . . , g j−1, c j , c j+1, . . . , cm〉,

where the classes ci are different from the classes chosen by the greedy algorithm. By construction,
the jth greedy choice g j does not conflict with any earlier class g1, g2, . . . , g j−1, and since our schedule
is conflict-free, neither does c j. Moreover, g j has the earliest finish time among all classes that don’t
conflict with the earlier classes; in particular, g j finishes before c j . This implies that g j does not conflict
with any of the later classes c j+1, . . . , cm. Thus, the schedule

〈g1, g2, . . . , g j−1, g j , c j+1, . . . , cm〉,

is conflict-free. (This is just a generalization of Lemma 3, which considers the case j = 1.) By induction,
it now follows that there is an optimal schedule 〈g1, g2, . . . , gk, ck+1, . . . , cm〉 that includes every class
chosen by the greedy algorithm. But this is impossible unless k = m; if there were a class ck+1 that does
not conflict with gk, the greedy algorithm would choose more than k classes. �

6.3 General Structure

The basic structure of this correctness proof is exactly the same as for the tape-sorting problem: an
inductive exchange argument.

• Assume that there is an optimal solution that is different from the greedy solution.

• Find the ‘first’ difference between the two solutions.

4

Algorithms Lecture 6: Greedy Algorithms

• Argue that we can exchange the optimal choice for the greedy choice without degrading the
solution.

This argument implies by induction that there is an optimal solution that contains the entire greedy
solution. Sometimes, as in the scheduling problem, an additional step is required to show no optimal
solution strictly improves the greedy solution.

6.4 Huffman codes

A binary code assigns a string of 0s and 1s to each character in the alphabet. A binary code is prefix-free
if no code is a prefix of any other. 7-bit ASCII and Unicode’s UTF-8 are both prefix-free binary codes.
Morse code is a binary code, but it is not prefix-free; for example, the code for S (· · ·) includes the code
for E (·) as a prefix. Any prefix-free binary code can be visualized as a binary tree with the encoded
characters stored at the leaves. The code word for any symbol is given by the path from the root to the
corresponding leaf; 0 for left, 1 for right. The length of a codeword for a symbol is the depth of the
corresponding leaf. (Note that the code tree is not a binary search tree. We don’t care at all about the
sorted order of symbols at the leaves. (In fact. the symbols may not have a well-defined order!)

Suppose we want to encode messages in an n-character alphabet so that the encoded message is as
short as possible. Specifically, given an array frequency counts f [1 .. n], we want to compute a prefix-free
binary code that minimizes the total encoded length of the message:2

n
∑

i=1

f [i] · depth(i).

In 1952, David Huffman developed the following greedy algorithm to produce such an optimal code:

HUFFMAN: Merge the two least frequent letters and recurse.

For example, suppose we want to encode the following helpfully self-descriptive sentence, discovered by
Lee Sallows:3

This sentence contains three a’s, three c’s, two d’s, twenty-six e’s, five f’s, three g’s,

eight h’s, thirteen i’s, two l’s, sixteen n’s, nine o’s, six r’s, twenty-seven s’s, twenty-two t’s,

two u’s, five v’s, eight w’s, four x’s, five y’s, and only one z.

To keep things simple, let’s forget about the forty-four spaces, nineteen apostrophes, nineteen commas,
three hyphens, and one period, and just encode the letters. Here’s the frequency table:

A C D E F G H I L N O R S T U V W X Y Z

3 3 2 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 1

Huffman’s algorithm picks out the two least frequent letters, breaking ties arbitrarily—in this case, say, Z

and D—and merges them together into a single new character DZ with frequency 3. This new character
becomes an internal node in the code tree we are constructing, with Z and D as its children; it doesn’t
matter which child is which. The algorithm then recursively constructs a Huffman code for the new
frequency table

A C E F G H I L N O R S T U V W X Y DZ

3 3 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 3

2This looks almost exactly like the cost of a binary search tree, but the optimization problem is very different: code trees are
not search trees!

3A. K. Dewdney. Computer recreations. Scientific American, October 1984. Douglas Hofstadter published a few earlier
examples of Lee Sallows’ self-descriptive sentences in his Scientific American column in January 1982.

5

Algorithms Lecture 6: Greedy Algorithms

After 19 merges, all 20 characters have been merged together. The record of merges gives us our code
tree. The algorithm makes a number of arbitrary choices; as a result, there are actually several different
Huffman codes. One such code is shown below.

170

59 111

32 60 51

25

12

6 6

3

39 21

17 10 11

8

4

16

S
27

N
16

W
8

H
8

X
4

O
9

T
22

F
5

V
5

Y
5

R
6

A
3

C
3

G
3

D
2

Z
1

I
13

E
26

U
2

L
2

A Huffman code for Lee Sallows’ self-descriptive sentence; the numbers are frequencies for merged characters

For example, the code for A is 110000, and the code for S is 00. The encoded message starts like this:

1001

T

0100

H

1101

I

00

S

00

S

111

E

011

N

1001

T

111

E

011

N

110001

C

111

E

110001

C

10001

O

011

N

1001

T

110000

A

1101

I
· · ·

Here is the list of costs for encoding each character, along with that character’s contribution to the total
length of the encoded message:

char. A C D E F G H I L N O R S T U V W X Y Z

freq. 3 3 2 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 1
depth 6 6 7 3 5 6 4 4 7 3 4 4 2 4 7 5 4 6 5 7
total 18 18 14 78 25 18 32 52 14 48 36 24 54 88 14 25 32 24 25 7

Altogether, the encoded message is 646 bits long. Different Huffman codes would assign different codes,
possibly with different lengths, to various characters, but the overall length of the encoded message is
the same for any Huffman code: 646 bits.

Given the simple structure of Huffman’s algorithm, it’s rather surprising that it produces an optimal
prefix-free binary code. Encoding Lee Sallows’ sentence using any prefix-free code requires at least 646
bits! Fortunately, the recursive structure makes this claim easy to prove using an exchange argument,
similar to our earlier optimality proofs. We start by proving that the algorithm’s very first choice is
correct.

Lemma 5. Let x and y be the two least frequent characters (breaking ties between equally frequent
characters arbitrarily). There is an optimal code tree in which x and y are siblings.

Proof: I’ll actually prove a stronger statement: There is an optimal code in which x and y are siblings
and have the largest depth of any leaf.

Let T be an optimal code tree, and suppose this tree has depth d. Since T is a full binary tree, it has
at least two leaves at depth d that are siblings. (Verify this by induction!) Suppose those two leaves are
not x and y , but some other characters a and b.

6

Algorithms Lecture 6: Greedy Algorithms

Let T ′ be the code tree obtained by swapping x and a. The depth of x increases by some amount ∆,
and the depth of a decreases by the same amount. Thus,

cost(T ′) = cost(T)− (f [a]− f [x])∆.

By assumption, x is one of the two least frequent characters, but a is not, which implies that f [a]≥ f [x].
Thus, swapping x and a does not increase the total cost of the code. Since T was an optimal code
tree, swapping x and a does not decrease the cost, either. Thus, T ′ is also an optimal code tree (and
incidentally, f [a] actually equals f [x]).

Similarly, swapping y and b must give yet another optimal code tree. In this final optimal code tree,
x and y as maximum-depth siblings, as required. �

Now optimality is guaranteed by our dear friend the Recursion Fairy! Essentially we’re relying on the
following recursive definition for a full binary tree: either a single node, or a full binary tree where some
leaf has been replaced by an internal node with two leaf children.

Theorem 6. Huffman codes are optimal prefix-free binary codes.

Proof: If the message has only one or two different characters, the theorem is trivial.
Otherwise, let f [1 .. n] be the original input frequencies, where without loss of generality, f [1] and

f [2] are the two smallest. To keep things simple, let f [n+ 1] = f [1] + f [2]. By the previous lemma,
we know that some optimal code for f [1 .. n] has characters 1 and 2 as siblings.

Let T ′ be the Huffman code tree for f [3 .. n+ 1]; the inductive hypothesis implies that T ′ is an
optimal code tree for the smaller set of frequencies. To obtain the final code tree T , we replace the leaf
labeled n+ 1 with an internal node with two children, labelled 1 and 2. I claim that T is optimal for the
original frequency array f [1 .. n].

To prove this claim, we can express the cost of T in terms of the cost of T ′ as follows. (In these
equations, depth(i) denotes the depth of the leaf labelled i in either T or T ′; if the leaf appears in both
T and T ′, it has the same depth in both trees.)

cost(T) =
n
∑

i=1

f [i] · depth(i)

=
n+1
∑

i=3

f [i] · depth(i) + f [1] · depth(1) + f [2] · depth(2)− f [n+ 1] · depth(n+ 1)

= cost(T ′) + f [1] · depth(1) + f [2] · depth(2)− f [n+ 1] · depth(n+ 1)

= cost(T ′) + (f [1] + f [2]) · depth(T)− f [n+ 1] · (depth(T)− 1)

= cost(T ′) + f [1] + f [2]

This equation implies that minimizing the cost of T is equivalent to minimizing the cost of T ′; in
particular, attaching leaves labeled 1 and 2 to the leaf in T ′ labeled n+ 1 gives an optimal code tree for
the original frequencies. �

To actually implement Huffman codes efficiently, we keep the characters in a min-heap, where the
priority of each character is its frequency. We can construct the code tree by keeping three arrays of
indices, listing the left and right children and the parent of each node. The root of the tree is the node
with index 2n− 1.

7

Algorithms Lecture 6: Greedy Algorithms

BUILDHUFFMAN(f [1 .. n]):
for i← 1 to n

L[i]← 0; R[i]← 0
INSERT(i, f [i])

for i← n to 2n− 1
x ← EXTRACTMIN()
y ← EXTRACTMIN()
f [i]← f [x] + f [y]
L[i]← x; R[i]← y
P[x]← i; P[y]← i
INSERT(i, f [i])

P[2n− 1]← 0

The algorithm performs O(n) min-heap operations. If we use a balanced binary tree as the heap, each
operation requires O(log n) time, so the total running time of BUILDHUFFMAN is O(n log n).

Finally, here are simple algorithms to encode and decode messages:

HUFFMANENCODE(A[1 .. k]):
m← 1
for i← 1 to k

HUFFMANENCODEONE(A[i])

HUFFMANENCODEONE(x):
if x < 2n− 1

HUFFMANENCODEONE(P[x])
if x = L[P[x]]

B[m]← 0
else

B[m]← 1
m← m+ 1

HUFFMANDECODE(B[1 .. m]):
k← 1
v← 2n− 1
for i← 1 to m

if B[i] = 0
v← L[v]

else
v← R[v]

if L[v] = 0
A[k]← v
k← k+ 1
v← 2n− 1

6.5 Matroids

Many problems that can be correctly solved by greedy algorithms can be described in terms of abstract
combinatorial objects called matroids. Matroids were first described in 1935 by the mathematician
Hassler Whitney as a combinatorial generalization of linear independence of vectors.

A matroid M is a finite collection of finite sets that satisfies three axioms:

• Non-emptiness: The empty set is in M. (Thus, M is not itself empty.)

• Heredity: If a set X is an element of M, then any subset of X is also in M.

• Exchange: If X and Y are two sets in M and |X | > |Y |, then there is an element x ∈ X \ Y such
that Y ∪ {x} is in M.

The sets in M are typically called independent sets; for example, we would say that any subset of an
independent set is independent. The union of all sets in M is called the ground set. An independent set is
called a basis if it is not a proper subset of another independent set. The exchange property implies that
every basis of a matroid has the same cardinality. The rank of a subset X of the ground set is the size
of the largest independent subset of X . A subset of the ground set that is not in M is called dependent
(surprise, surprise). Finally, a dependent set is called a circuit if every proper subset is independent.

Most of this terminology is justified by Whitney’s original example:

8

Algorithms Lecture 6: Greedy Algorithms

Linear matroid: Let A be any n×m matrix. A subset I ⊆ {1, 2, . . . , n} is independent if and
only if the corresponding subset of columns of A is linearly independent.

The heredity property follows directly from the definition of linear independence; the exchange property
is implied by an easy dimensionality argument. A basis in any linear matroid is also a basis (in the
linear-algebra sense) of the vector space spanned by the columns of A. Similarly, the rank of a set of
indices is precisely the rank (in the linear-algebra sense) of the corresponding set of column vectors.

Here are several other examples of matroids; some of these we will see again later. I will leave the
proofs that these are actually matroids as exercises for the reader.

• Uniform matroid Uk,n: A subset X ⊆ {1,2, . . . , n} is independent if and only if |X | ≤ k. Any
subset of {1, 2, . . . , n} of size k is a basis; any subset of size k+ 1 is a circuit.

• Graphic/cycle matroid M(G): Let G = (V, E) be an arbitrary undirected graph. A subset of E is
independent if it defines an acyclic subgraph of G. A basis in the graphic matroid is a spanning
tree of G; a circuit in this matroid is a cycle in G.

• Cographic/cocycle matroid M∗(G): Let G = (V, E) be an arbitrary undirected graph. A subset
I ⊆ E is independent if the complementary subgraph (V, E \ I) of G is connected. A basis in this
matroid is the complement of a spanning tree; a circuit in this matroid is a cocycle—a minimal set
of edges that disconnects the graph.

• Matching matroid: Let G = (V, E) be an arbitrary undirected graph. A subset I ⊆ V is independent
if there is a matching in G that covers I .

• Disjoint path matroid: Let G = (V, E) be an arbitrary directed graph, and let s be a fixed vertex
of G. A subset I ⊆ V is independent if and only if there are edge-disjoint paths from s to each
vertex in I .

Now suppose each element of the ground set of a matroid M is given an arbitrary non-negative
weight. The matroid optimization problem is to compute a basis with maximum total weight. For
example, if M is the cycle matroid for a graph G, the matroid optimization problem asks us to find the
maximum spanning tree of G. Similarly, if M is the cocycle matroid for G, the matroid optimization
problem seeks (the complement of) the minimum spanning tree.

The following natural greedy strategy computes a basis for any weighted matroid:

GREEDYBASIS(M, w):
X [1 .. n]←

⋃

M (the ground set)
sort X in decreasing order of weight w
G←∅
for i← 1 to n

if G ∪ {X [i]} ∈M

add X [i] to G
return G

Suppose we can test in F(n) whether a given subset of the ground set is independent. Then this algorithm
runs in O(n log n+ n · F(n)) time.

Theorem 7. For any matroid M and any weight function w, GREEDYBASIS(M, w) returns a maximum-
weight basis of M.

9

Algorithms Lecture 6: Greedy Algorithms

Proof: Let G = {g1, g2, . . . , gk} be the independent set returned by GREEDYBASIS(M, w). If any other
element could be added to G to get a larger independent set, the greedy algorithm would have added it.
Thus, G is a basis.

For purposes of deriving a contradiction, suppose there is an independent set H = {h1, h2, . . . , h`}
such that

k
∑

i=1

w(gi)<
∑̀

j=1

w(hi).

Without loss of generality, we assume that H is a basis. The exchange property now implies that k = `.
Now suppose the elements of G and H are indexed in order of decreasing weight. Let i be the

smallest index such that w(gi)< w(hi), and consider the independent sets

Gi−1 = {g1, g2, . . . , gi−1} and Hi = {h1, h2, . . . , hi−1, hi}.

By the exchange property, there is some element h j ∈ Hi such that Gi−1 ∪ {h j} is an independent set. We
have w(h j)≥ w(hi)> w(gi). Thus, the greedy algorithm considers and rejects the heavier element h j
before it considers the lighter element gi . But this is impossible—the greedy algorithm accepts elements
in decreasing order of weight. �

We now immediately have a correct greedy optimization algorithm for any matroid. Returning to
our examples:

• Linear matroid: Given a matrix A, compute a subset of vectors of maximum total weight that span
the column space of A.

• Uniform matroid: Given a set of weighted objects, compute its k largest elements.

• Cycle matroid: Given a graph with weighted edges, compute its maximum spanning tree. In this
setting, the greedy algorithm is better known as Kruskal’s algorithm.

• Cocycle matroid: Given a graph with weighted edges, compute its minimum spanning tree.

• Matching matroid: Given a graph, determine whether it has a perfect matching.

• Disjoint path matroid: Given a directed graph with a special vertex s, find the largest set of
edge-disjoint paths from s to other vertices.

The exchange condition for matroids turns out to be crucial for the success of this algorithm. A subset
system is a finite collection S of finite sets that satisfies the heredity condition—If X ∈ S and Y ⊆ X , then
Y ∈ S—but not necessarily the exchange condition.

Theorem 8. For any subset system S that is not a matroid, there is a weight function w such that
GREEDYBASIS(S, w) does not return a maximum-weight set in S.

Proof: Let X and Y be two sets in S that violate the exchange property—|X |> |Y |, but for any element
x ∈ X \ Y , the set Y ∪ {x} is not in S. Let m= |Y |. We define a weight function as follows:

• Every element of Y has weight m+ 2.

• Every element of X \ Y has weight m+ 1.

• Every other element of the ground set has weight zero.

10

Algorithms Lecture 6: Greedy Algorithms

With these weights, the greedy algorithm will consider and accept every element of Y , then consider
and reject every element of X , and finally consider all the other elements. The algorithm returns a set
with total weight m(m+ 2) = m2+ 2m. But the total weight of X is at least (m+ 1)2 = m2+ 2m+ 1.
Thus, the output of the greedy algorithm is not the maximum-weight set in S. �

Recall the Applied Chaos scheduling problem considered earlier in this lecture. There is a natural
subset system associated with this problem: A set of classes is independent if and only if not two classes
overlap. (This is just the graph-theory notion of ‘independent set’!) This subset system is not a matroid,
because there can be maximal independent sets of different sizes, which violates the exchange property.
If we consider a weighted version of the class scheduling problem, say where each class is worth a
different number of hours, Theorem 8 implies that the greedy algorithm will not always find the optimal
schedule. (In fact, there’s an easy counterexample with only two classes!) However, Theorem 8 does not
contradict the correctness of the greedy algorithm for the original unweighted problem, however; that
problem uses a particularly lucky choice of weights (all equal).

6.6 Scheduling with Deadlines

Suppose you have n tasks to complete in n days; each task requires your attention for a full day. Each
task comes with a deadline, the last day by which the job should be completed, and a penalty that you
must pay if you do not complete each task by its assigned deadline. What order should you perform
your tasks in to minimize the total penalty you must pay?

More formally, you are given an array D[1 .. n] of deadlines an array P[1 .. n] of penalties. Each
deadline D[i] is an integer between 1 and n, and each penalty P[i] is a non-negative real number.
A schedule is a permutation of the integers {1,2, . . . , n}. The scheduling problem asks you to find a
schedule π that minimizes the following cost:

cost(π) :=
n
∑

i=1

P[i] · [π(i)> D[i]].

This doesn’t look anything like a matroid optimization problem. For one thing, matroid optimization
problems ask us to find an optimal set; this problem asks us to find an optimal permutation. Surprisingly,
however, this scheduling problem is actually a matroid optimization in disguise! For any schedule π, call
tasks i such that π(i)> D[i] late, and all other tasks on time. The following trivial observation is the key
to revealing the underlying matroid structure.

The cost of a schedule is determined by the subset of tasks that are on time.

Call a subset X of the tasks realistic if there is a schedule π in which every task in X is on time. We
can precisely characterize the realistic subsets as follows. Let X (t) denote the subset of tasks in X whose
deadline is on or before t:

X (t) := {i ∈ X | D[i]≤ t}.

In particular, X (0) =∅ and X (n) = X .

Lemma 9. Let X ⊆ {1,2, . . . , n} be an arbitrary subset of the n tasks. X is realistic if and only if
|X (t)| ≤ t for every integer t.

Proof: Let π be a schedule in which every task in X is on time. Let it be the tth task in X to be
completed. On the one hand, we have π(it) ≥ t, since otherwise, we could not have completed t − 1

11

Algorithms Lecture 6: Greedy Algorithms

other jobs in X before it . On the other hand, π(it) ≤ D[i], because it is on time. We conclude that
D[it]≥ t, which immediately implies that |X (t)| ≤ t.

Now suppose |X (t)| ≤ t for every integer t. If we perform the tasks in X in increasing order of
deadline, then we complete all tasks in X with deadlines t or less by day t. In particular, for any i ∈ X ,
we perform task i on or before its deadline D[i]. Thus, X is realistic. �

We can define a canonical schedule for any set X as follows: execute the tasks in X in increasing
deadline order, and then execute the remaining tasks in any order. The previous proof implies that a
set X is realistic if and only if every task in X is on time in the canonical schedule for X . Thus, our
scheduling problem can be rephrased as follows:

Find a realistic subset X such that
∑

i∈X P[i] is maximized.

So we’re looking for optimal subsets after all.

Lemma 10. The collection of realistic sets of jobs forms a matroid.

Proof: The empty set is vacuously realistic, and any subset of a realistic set is clearly realistic. Thus, to
prove the lemma, it suffices to show that the exchange property holds. Let X and Y be realistic sets of
jobs with |X |> |Y |.

Let t∗ be the largest integer such that |X (t∗)| ≤ |Y (t∗)|. This integer must exist, because |X (0)| =
0≤ 0= |Y (0)| and |X (n)|= |X |> |Y |= |Y (n)|. By definition of t∗, there are more tasks with deadline
t∗+ 1 in X than in Y . Thus, we can choose a task j in X \ Y with deadline t∗+ 1; let Z = Y ∪ { j}.

Let t be an arbitrary integer. If t ≤ t∗, then |Z(t)|= |Y (t)| ≤ t, because Y is realistic. On the other
hand, if t > t∗, then |Z(t)|= |Y (t)|+ 1≤ |X (t)|< t by definition of t∗ and because X is realistic. The
previous lemma now implies that Z is realistic. This completes the proof of the exchange property. �

This lemma implies that our scheduling problem is a matroid optimization problem, so the greedy
algorithm finds the optimal schedule.

GREEDYSCHEDULE(D[1 .. n], P[1 .. n]):
Sort P in increasing order, and permute D to match
j← 0
for i← 1 to n

X [j+ 1]← i
if X [1 .. j+ 1] is realistic

j← j+ 1
return the canonical schedule for X [1 .. j]

To turn this outline into a real algorithm, we need a procedure to test whether a given subset of jobs
is realistic. Lemma 9 immediately suggests the following strategy to answer this question in O(n) time.

REALISTIC?(X [1 .. m], D[1 .. n]):
〈〈X is sorted by increasing deadline: i ≤ j =⇒ D[X [i]]≤ D[X [j]]〉〉
N ← 0
j← 0
for t ← 1 to n

if D[X [j]] = t
N ← N + 1; j← j+ 1

〈〈Now N = |X (t)|〉〉
if N > t

return FALSE

return TRUE

12

Algorithms Lecture 6: Greedy Algorithms

If we use this subroutine, GREEDYSCHEDULE runs in O(n2) time. By using some appropriate data structures,
the running time can be reduced to O(n log n); details are left as an exercise for the reader.

Exercises

1. Let X be a set of n intervals on the real line. A subset of intervals Y ⊆ X is called a tiling path if the
intervals in Y cover the intervals in X , that is, any real value that is contained in some interval in
X is also contained in some interval in Y . The size of a tiling cover is just the number of intervals.

Describe and analyze an algorithm to compute the smallest tiling path of X as quickly as possible.
Assume that your input consists of two arrays X L[1 .. n] and XR[1 .. n], representing the left and
right endpoints of the intervals in X . If you use a greedy algorithm, you must prove that it is
correct.

A set of intervals. The seven shaded intervals form a tiling path.

2. Let X be a set of n intervals on the real line. We say that a set P of points stabs X if every interval
in X contains at least one point in P. Describe and analyze an efficient algorithm to compute the
smallest set of points that stabs X . Assume that your input consists of two arrays X L[1 .. n] and
XR[1 .. n], representing the left and right endpoints of the intervals in X . As usual, If you use a
greedy algorithm, you must prove that it is correct.

A set of intervals stabbed by four points (shown here as vertical segments)

3. Let X be a set of n intervals on the real line. A proper coloring of X assigns a color to each interval,
so that any two overlapping intervals are assigned different colors. Describe and analyze an
efficient algorithm to compute the minimum number of colors needed to properly color X . Assume
that your input consists of two arrays L[1 .. n] and R[1 .. n], where L[i] and R[i] are the left and
right endpoints of the ith interval. As usual, if you use a greedy algorithm, you must prove that it
is correct.

1
2

5
1

44

2

5

3
4

1
3

5

3 3 2

A proper coloring of a set of intervals using five colors.

13

Algorithms Lecture 6: Greedy Algorithms

4. Prove that for any graph G, the ‘graphic matroid’ M(G) is in fact a matroid.

5. Prove that for any graph G, the ‘cographic matroid’ M∗(G) is in fact a matroid.

6. Prove that for any graph G, the ‘matching matroid’ of G is in fact a matroid. [Hint: What is the
symmetric difference of two matchings?]

7. Prove that for any directed graph G and any vertex s of G, the resulting ‘disjoint path matroid’ of G
is in fact a matroid. [Hint: This question is much easier if you’re already familiar with maximum
flows.]

8. Let G be an undirected graph. A set of cycles {c1, c2, . . . , ck} in G is called redundant if every edge
in G appears in an even number of ci ’s. A set of cycles is independent if it contains no redundant
subset. A maximal independent set of cycles is called a cycle basis for G.

(a) Let C be any cycle basis for G. Prove that for any cycle γ in G, there is a subset A⊆ C such
that A∩ {γ} is redundant. In other words, γ is the ‘exclusive or’ of the cycles in A.

(b) Prove that the set of independent cycle sets form a matroid.
?(c) Now suppose each edge of G has a weight. Define the weight of a cycle to be the total weight

of its edges, and the weight of a set of cycles to be the total weight of all cycles in the set.
(Thus, each edge is counted once for every cycle in which it appears.) Describe and analyze
an efficient algorithm to compute the minimum-weight cycle basis in G.

9. Describe a modification of GREEDYSCHEDULE that runs in O(n log n) time. [Hint: Store X in an
appropriate data structure that supports the operations “Is X ∪ {i} realistic?” and “Add i to X ” in
O(log n) time each.]

10. Suppose you are standing in a field surrounded by several large balloons. You want to use your
brand new Acme Brand Zap-O-MaticTM to pop all the balloons, without moving from your current
location. The Zap-O-MaticTM shoots a high-powered laser beam, which pops all the balloons it hits.
Since each shot requires enough energy to power a small country for a year, you want to fire as
few shots as possible.

Nine balloons popped by 4 shots of the Zap-O-MaticTM

The minimum zap problem can be stated more formally as follows. Given a set C of n circles in the
plane, each specified by its radius and the (x , y) coordinates of its center, compute the minimum
number of rays from the origin that intersect every circle in C . Your goal is to find an efficient
algorithm for this problem.

14

Algorithms Lecture 6: Greedy Algorithms

(a) Suppose it is possible to shoot a ray that does not intersect any balloons. Describe and
analyze a greedy algorithm that solves the minimum zap problem in this special case. [Hint:
See Exercise 2.]

(b) Describe and analyze a greedy algorithm whose output is within 1 of optimal. That is, if m is
the minimum number of rays required to hit every balloon, then your greedy algorithm must
output either m or m+ 1. (Of course, you must prove this fact.)

(c) Describe an algorithm that solves the minimum zap problem in O(n2) time.
?(d) Describe an algorithm that solves the minimum zap problem in O(n log n) time.

Assume you have a subroutine INTERSECTS(r, c) that determines whether a ray r intersects a circle!c
in O(1) time. It’s not that hard to write this subroutine, but it’s not the interesting part of the
problem.

c© Copyright 2009 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

15

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

	Greedy Algorithms
	Storing Files on Tape
	Scheduling Classes
	General Structure
	Huffman codes
	Matroids
	Scheduling with Deadlines

