Algorithms Non-Lecture 2: Fast Fourier Transforms

Calvin: Here’s another math problem | can’t figure out. What’s 9+47?

Hobbes: Ooh, that’s a tricky one. You have to use calculus and imaginary
numbers for this.

Calvin: IMAGINARY NUMBERS?!

Hobbes: You know, eleventeen, thirty-twelve, and all those. It’s a little
confusing at first.

Calvin: How did YOU learn all this? You’ve never even gone to school!
Hobbes: Instinct. Tigers are born with it.
— “Calvin and Hobbes” (January 6, 1998)

It needs evaluation

So let the games begin

A heinous crime, a show of force
A murder would be nice, of course

— “Bad Horse's Letter”, Dr. Horrible’s Sing-Along Blog (2008)

2 Fast Fourier Transforms

2.1 Polynomials

In this lecture we’ll talk about algorithms for manipulating polynomials: functions of one variable built
from additions subtractions, and multiplications (but no divisions). The most common representation
for a polynomial p(x) is as a sum of weighted powers of a variable x:

n

p(x)= Zajxj.

j=0

The numbers q; are called coefficients. The degree of the polynomial is the largest power of x; in the
example above, the degree is n. Any polynomial of degree n can be specified by a sequence of n + 1
coefficients. Some of these coefficients may be zero, but not the nth coefficient, because otherwise the
degree would be less than n.

Here are three of the most common operations that are performed with polynomials:
e Evaluate: Give a polynomial p and a number x, compute the number p(x).

e Add: Give two polynomials p and g, compute a polynomial r = p + g, so that r(x) = p(x) + g(x)
for all x. If p and g both have degree n, then their sum p + q also has degree n.

e Multiply: Give two polynomials p and g, compute a polynomial r = p-q, so that r(x) = p(x)-q(x)
for all x. If p and g both have degree n, then their product p - g has degree 2n.

Suppose we represent a polynomial of degree n as an array of n + 1 coefficients P[0..n], where
P[j] is the coefficient of the x/ term. We learned simple algorithms for all three of these operations in
high-school algebra:

EvALUATE(P[O..n], x): MuttipLy(P[0..n],Q[0..m]):
X “é (X =x7)) Abb(P[0..1],Q[0.A]): forJ};_.O tog“"
%z);_V—Oton forj—0Oton for'<—[]2)ton
]}"—}’+P[j]-X RUj] = PLT+QL]]fork<—0tom
X Xox rem RO..n] RIj+K] < Rj+ K]+ P[] QIK]
return y return R[0..n+ m]

Algorithms Non-Lecture 2: Fast Fourier Transforms

EVALUATE uses O(n) arithmetic operationsﬂ This is the best we can hope for, but we can cut the
number of multiplications in half using Horner’s rule:

p(x)=ag+ x(a; +x(ay+...+ xa,)).

HorNER(P[0..n], x):
Yy < P[n]
for i < n—1 downto O
y < x-y+P[i]
return y

The addition algorithm also runs in O(n) time, and this is clearly the best we can do.

The multiplication algorithm, however, runs in O(n?) time. In the previous lecture, we saw a
divide and conquer algorithm (due to Karatsuba) for multiplying two n-bit integers in only O(n'8)
steps; precisely the same algorithm can be applied here. Even cleverer divide-and-conquer strategies
lead to multiplication algorithms whose running times are arbitrarily close to linear—O(n'**) for your
favorite value e > 0—but with great cleverness comes great confusion. These algorithms are difficult to
understand, even more difficult to implement correctly, and not worth the trouble in practice thanks to
large constant factors.

2.2 Alternate Representations

Part of what makes multiplication so much harder than the other two operations is our input representa-
tion. Coefficients vectors are the most common representation for polynomials, but there are at least
two other useful representations.

2.2.1 Roots

The Fundamental Theorem of Algebra states that every polynomial p of degree n has exactly n roots
r1,Tg,... Ty such that p(r;) = 0 for all j. Some of these roots may be irrational; some of these roots may
by complex; and some of these roots may be repeated. Despite these complications, this theorem implies
a unique representation of any polynomial of the form

pC)=s] Jex—rp)

j=1

where the r;’s are the roots and s is a scale factor. Once again, to represent a polynomial of degree n, we
need a list of n 4+ 1 numbers: one scale factor and n roots.

Given a polynomial in this root representation, we can clearly evaluate it in O(n) time. Given two
polynomials in root representation, we can easily multiply them in O(n) time by multiplying their scale
factors and just concatenating the two root sequences.

Unfortunately, if we want to add two polynomials in root representation, we’re pretty much out of
luck. There’s essentially no correlation between the roots of p, the roots of g, and the roots of p +q.
We could convert the polynomials to the more familiar coefficient representation first—this takes O(n?)

1Pm going to assume in this lecture that each arithmetic operation takes O(1) time. This may not be true in practice; in fact,
one of the most powerful applications of FFTs is fast integer multiplication. One of the fastest integer multiplication algorithms,
due to Schonhage and Strassen, multiplies two n-bit binary numbers using O(n logn loglogn logloglogn loglogloglogn---)
bit operations. The algorithm uses an n-element Fast Fourier Transform, which requires several O(log n)-nit integer multiplica-
tions. These smaller multiplications are carried out recursively (of course!), which leads to the cascade of logs in the running
time. Needless to say, this is a can of worms.

Algorithms Non-Lecture 2: Fast Fourier Transforms

time using the high-school algorithms—but there’s no easy way to convert the answer back. In fact, for
most polynomials of degree 5 or more in coefficient form, it’s impossible to compute roots exactly

2.2.2 Samples

Our third representation for polynomials comes from a different consequence of the Fundamental
Theorem of Algebra. Given a list of n + 1 pairs {(xq, yo),(x1,¥1),--.,(X,, ¥,) }, there is exactly one
polynomial p of degree n such that p(x;) = y; for all j. This is just a generalization of the fact that
any two points determine a unique line, since a line is (the graph of) a polynomial of degree 1. We say
that the polynomial p interpolates the points (x;, y;). As long as we agree on the sample locations x; in
advance, we once again need exactly n 4+ 1 numbers to represent a polynomial of degree n.

Adding or multiplying two polynomials in this sample representation is easy, as long as they use
the same sample locations x;. To add the polynomials, just add their sample values. To multiply two
polynomials, just multiply their sample values; however, if we’re multiplying two polynomials of degree
n, we need to start with 2n + 1 sample values for each polynomial, since that’s how many we need to
uniquely represent the product polynomial. Both algorithms run in O(n) time.

Unfortunately, evaluating a polynomial in this representation is no longer trivial. The following
formula, due to Lagrange, allows us to compute the value of any polynomial of degree n at any point,
given a set of n + 1 samples.

n—1 (x —x n—1 .
b= @M) B /R o (R
S\ T Ly —x))\ Ty O —xi) 1
Hopefully it’s clear that formula actually describes a polynomial, since each term in the rightmost sum
is written as a scaled product of monomials. It’s also not hard to check that p(x;) = y; for all j. As I
mentioned earlier, the fact that this is the only polynomial that interpolates the points {(x;, y;)} is an
easy consequence of the Fundamental Theorem of Algebra. We can easily transform Lagrange’s formula
into an O(n?)-time algorithm.

2.2.3 Summary

We find ourselves in the following frustrating situation. We have three representations for polynomials
and three basic operations. Each representation allows us to almost trivially perform a different pair of
operations in linear time, but the third takes at least quadratic time, if it can be done at all!

| evaluate add multiply
coefficients o(n) 0(n) 0(n?
roots + scale o(n) 00 0o(n)
samples on?) oM o)

2.3 Converting Between Representations

What we need are fast algorithms to convert quickly from one representation to another. That way,
when we need to perform an operation that’s hard for our default representation, we can switch to a
different representation that makes the operation easy, perform that operation, and then switch back.

2This is where numerical analysis comes from.

Algorithms Non-Lecture 2: Fast Fourier Transforms

This strategy immediately rules out the root representation, since (as I mentioned earlier) finding roots
of polynomials is impossible in general, at least if we're interested in exact results.

So how do we convert from coefficients to samples and back? Clearly, once we choose our sample
positions x;, we can compute each sample value y; = p(x;) in O(n) time from the coefficients using
Horner’s rule. So we can convert a polynomial of degree n from coefficients to samples in O(n?) time.
The Lagrange formula gives us an explicit conversion algorithm from the sample representation back to
the more familiar coefficient representation. If we use the naive algorithms for adding and multiplying
polynomials (in coefficient form), this conversion takes O(n?) time.

We can improve the cubic running time by observing that both conversion problems boil down to
computing the product of a matrix and a vector. The explanation will be slightly simpler if we assume
the polynomial has degree n — 1, so that n is the number of coefficients or samples. Fix a sequence
X0, X1, ..., Xp_1 Of sample positions, and let V be the n x n matrix where v;; = x{ (indexing rows and
columns from O ton —1):

2 .. n—17
X x5 X,
2 n—1
X1 be) Xy
2 n—1
v=11 x, Xy ottt Xy
2 n—1
11 X1 x5 X,]
The matrix V is called a Vandermonde matrix. The vector of coefficients @ = (ag, ay,...,a,_;) and the
vector of sample values ¥ = (yy, ¥1,.--, Y1) are relate e matrix equation
tor of le val 0> Y1 1 lated by th t t
va=y,
or in more detail,
B 2 n—-17 T 7 r 7
1 xg Xy o otXg ag Yo
2 n—1
1 x X7 ocrXg a; Y1
2 n—1
1 xy Xy ottt Xy a | =1 ¥y
2 n—1
_1 Xp-1 X1 - X714 Ldp-1] L Yn—1

Given this formulation, we can clearly transform any coefficient vector @ into the corresponding
sample vector ¥ in O(n?) time.

Conversely, if we know the sample values ¥, we can recover the coefficients by solving a system of n
linear equations in n unknowns; this takes O(n®) time if we use Gaussian elimination. But we can speed
this up by implicitly hard-coding the sample positions into the algorithm, To convert from samples to
coefficients, we can simply multiply the sample vector by the inverse of V, again in O(n?) time.

a=vly

Computing V! would take O(n®) time if we had to do it from scratch using Gaussian elimination, but
because we fixed the set of sample positions in advance, the matrix V! can be written directly into the
algorithm

So we can convert from coefficients to sample value and back in O(n?) time, which is pointless,
because we can add, multiply, or evaluate directly in either representation in O(n?) time. But wait!

3Actually, it is possible to invert an n X n matrix in o(n®) time, using fast matrix multiplication algorithms that closely
resemble Karatsuba’s sub-quadratic divide-and-conquer algorithm for integer/polynomial multiplication.

Algorithms Non-Lecture 2: Fast Fourier Transforms

There’s a degree of freedom we haven’t exploited—We get to choose the sample positions! Our
conversion algorithm may be slow only because we're trying to be too general. Perhaps, if we choose
a set of sample points with just the right kind of recursive structure, we can do the conversion more
quickly. In fact, there is a set of sample points that’s perfect for the job.

2.4 The Discrete Fourier Transform

Given a polynomial of degree n — 1, we’d like to find n sample points that are somehow as symmetric as
possible. The most natural choice for those n points are the nth roots of unity; these are the roots of the
polynomial x™ — 1 = 0. These n roots are spaced exactly evenly around the unit circle in the complex
planef_r] Every nth root of unity is a power of the primitive root

. 2n 2n
w, = e>™/" = cos —— +isin —.
n n

A typical nth root of unity has the form

. N 27 21
wl = e/ = cog (—]) +isin (—]) .
n n

These complex numbers have several useful properties for any integers n and k:

e There are only n different nth roots of unity: wﬁ = wlflm"d n,

e If n is even, then wﬁ+”/2 = —a)ﬁ; in particular, cog/z = —a)g =—1.
o1/ co’; =w, k= ’,fl = (w,)¥, where the bar represents complex conjugation: a + bi = a — bi

° w,= wlin. Thus, every nth root of unity is also a (kn)th root of unity.

If we sample a polynomial of degree n — 1 at the nth roots of unity, the resulting list of sample values
is called the discrete Fourier transform of the polynomial (or more formally, of the coefficient vector).
Thus, given an array P[0..n — 1] of coefficients, the discrete Fourier transform computes a new vector
P*[0..n — 1] where

n—1
P*[j]=p(e)) =Y P[k]- &
k=0

We can obviously compute P* in O(n?) time, but the structure of the nth roots of unity lets us do better.
But before we describe that faster algorithm, let’s think about how we might invert this transformation.

Recall that transforming coefficients into sample values is a linear transformation; the sample vector
is the product of a Vandermonde matrix V and the coefficient vector. For the discrete Fourier transform,
each entry in V is an nth root of unity; specifically,

= enylk
Vik = @y

“In this lecture, i always represents the square root of —1. Computer scientists are used to thinking of i as an integer index
into a sequence, an array, or a for-loop, but we obviously can’t do that here. The physicist’s habit of using j = v —1 just delays
the problem (How do physicists write quaternions?), and typographical tricks like I or i or Mathematica’s 1 are just stupid.

Algorithms Non-Lecture 2: Fast Fourier Transforms

for all integers j and k. Thus,

11 1 1 1]
1 o, wﬁ w?l wg_l
1 a)ﬁ a);‘ wf’l wi(”_l)
V= 1 wi wg wg wi(”_l)
PR R e I R VS b

To invert the discrete Fourier transform, converting sample values back to coefficients, we just have
to multiply P* by the inverse matrix V1. But the following amazing fact implies that this is almost the
same as multiplying by V itself:

Claim: V™! =V/n

Proof: Let W = V/n. We just have to show that M = VW is the identity matrix. We can compute a
single entry in M as follows:

n—1 n—1 1 n—1 1 n—1
== el = Sl = 1S e
=0 =0 =0 =0
. j—k
If j = k, then w), :w?l:l,so
1 n—1
=0

and if j # k, we have a geometric series

n—1 j—kyn nyj—k _ j—k
_ iy (o)—1_(wn) L e |
mj = 2:(@{1) = T =— =— 0.
=0 w, -1 wp, -1 wp, -1
That’s it! O

In other words, if W = V! then w ik =Vj/n= co{lk /n=w,’ k /n. What this means for us computer
scientists is that any algorithm for computing the discrete Fourier transform can be easily modified to
compute the inverse transform as well.

2.5 Divide and Conquer!

The symmetry in the roots of unity also allow us to compute the discrete Fourier transform efficiently
using a divide and conquer strategy. The basic structure of the algorithm is almost the same as
MergeSort, and the O(nlogn) running time will ultimately follow from the same recurrence. The Fast
Fourier Transform algorithm, popularized by Cooley and Tukey in 1965EL assumes that n is a power of
two; if necessary, we can just pad the coefficient vector with zeros.

5Actually, the FFT algorithm was previously published by Runge and Kénig in 1924, and again by Yates in 1932, and again
by Stumpf in 1937, and again by Danielson and Lanczos in 1942. So of course it’s often called the Coley-Tukey algorithm. But
the algorithm was first used by Gauss in the 1800s for calculating the paths of asteroids from a finite number of equally-spaced
observations. By hand. Fourier himself always did it the hard way.

Cooley and Tukey apparently developed their algorithm to help detect Soviet nuclear tests without actually visiting Soviet
nuclear facilities, by interpolating off-shore seismic readings. Without their rediscovery of the FFT algorithm, the nuclear test
ban treaty would never have been ratified, and we’d all be speaking Russian, or more likely, whatever language radioactive
glass speaks.

Algorithms Non-Lecture 2: Fast Fourier Transforms

Let p(x) be a polynomial of degree n — 1, represented by an array P[0..n — 1] of coefficients. The
FFT algorithm begins by splitting p into two smaller polynomials u and v, each with degree n/2 — 1.
The coefficients of u are precisely the the even-degree coefficients of p; the coefficients of v are the
odd-degree coefficients of p. For example, if p(x) = 3x> — 4x2 + 7x + 5, then u(x) = —4x + 5 and
v(x) = 3x + 7. These three polynomials are related by the equation

p(x) = u(x?)+ x - v(x?).

In particulay, if x is an nth root of unity, we have

p(wf) = uw(w*)+ k- v(w?).

Now we can exploit those roots of unity again. Since n is a power of two, n must be even, so we

2k _ , .k _ , . kmodn/2

have w7 = w, J2 = @ . In other words, the values of p at the nth roots of unity depend on the

values of u and v at (n/2)th roots of unity.

kN kmodn/2 k kmodn/2
p(w;) = u(a)n/2)+o)n-v(wn/2).

But those are just coefficients in the DFTs of u and v! We conclude that the DFT coefficients of P are
defined by the following recurrence:

P*[k] = U*[k mod n/2] + w® - V*[k mod n/2]

Once the Recursion Fairy give us U* and V*, we can compute P* in linear time. The base case for the
recurrence is n = 1: if p(x) has degree 0, then P*[0] = P[0].
Here’s the complete FFT algorithm, along with its inverse.

FFT(P[0..n—1]):
ifn=1
return P

forj—0Oton/2—1
U[j] < P[2]j]
V[jl<P[2j+1]
U* < FFT(U[0..n/2 —1])
V* — FFT(V[0..n/2 —1])
W, — cos(zf) +isin(27”)
w1

forj—0Oton/2—-1

P*[j] < U'[jl+w-V[j]
P*[j+n/2] «U'[j] —w-V*[]]
W w-w,

return P*[0..n— 1]

INVERSEFFT(P*[0..n —1]):

ifn=1

return P
forj—0Oton/2—1

U*[j] < P*[2]]

Ve[jl < P*[2j +1]
U <« INVERSEFFT(U[0..n/2 —1])
V « INVERSEFFT(V[0..n/2 —1])
W, — cos(%") —isin(zf)
w1

forj—0ton/2—1

P(j] <2U[j]+w-V[jD
P[j+n/2] < 2(U[j] - w-V[j])
W w-w,

return P[0..n —1]

The overall running time of this algorithm satisfies the recurrence T(n) = ©(n) + 2T (n/2), which as
we all know solves to T(n) = ©(nlogn).
2.6 Fast Multiplication

Given two polynomials p and g, each represented by an array of coefficients, we can multiply them in
O(nlogn) arithmetic operations as follows. First, pad the coefficient vectors and with zeros until the

Algorithms Non-Lecture 2: Fast Fourier Transforms

size is a power of two greater than or equal to the sum of the degrees. Then compute the DFTs of each
coefficient vector, multiply the sample values one by one, and compute the inverse DFT of the resulting
sample vector.

FFTMurtieiy(P[0..n —1],Q[0..m — 1]):
£ — [1g(n+ m)]
forje—nto2f—1

P[j]<0
forj—mto2‘—1

Q[j] <0
P* — FFT(P)
Q"< FFT(Q)
forj<—0to2f—1

R*[j] < P*[j]1-Q"[j]
return INVERSEFFT(R*)

2.7 Inside the FEFT

FFTs are often implemented in hardware as circuits. To see the recursive structure of the circuit, let’s
connect the top-level inputs and outputs to the inputs and outputs of the recursive calls. On the left we
split the input P into two recursive inputs U and V. On the right, we combine the outputs U* and V* to
obtain the final output P*.

\ / 000 000 :ZZ >< \ /

N U FTeR U oo XX\
N \XX/ 110 \XX/
P] XXXX p* 001 XXXX

101

i
\/ FFT(n/2) \V* ol
] / \ 111 111 111 >< / \

butterfly network

==

—_—
bit reversal permutation

The recursive structure of the FFT algorithm.

If we expand this recursive structure completely, we see that the circuit splits naturally into two
parts. The left half computes the bit-reversal permutation of the input. To find the position of P[k] in
this permutation, write k in binary, and then read the bits backward. For example, in an 8-element
bit-reversal permutation, P[3] = P[011,] ends up in position 6 = 110,. The right half of the FFT circuit
is a butterfly network. Butterfly networks are often used to route between processors in massively-parallel
computers, since they allow any processor to communicate with any other in only O(logn) steps.

Algorithms Non-Lecture 2: Fast Fourier Transforms

Caveat Lector! This presentation is appropriate for graduate students or undergrads with
strong math backgrounds, but it leaves most undergrads confused. You may find it less
confusing to approach the material in the opposite order, as follows:

First, any polynomial can be split into even-degree and odd-degree parts:

p(x) = peven(xz) +x 'podd(xz)-

We can evaluate p(x) by recursively evaluating payen(x?) and pyqq(x?) and doing O(1)
arithmetic operations.

Now suppose our task is to evaluate the degree-n polynomial p(x) at n different points x,
as quickly as possible. To exploit the even/odd recursive structure, we must choose the n
evaluation points carefully. Call a set X of n values delicious if either (1) X has only one
element, or (2) the set X? = {x? | x € X} has only n/2 elements and X? is delicious. Clearly
such a set exists only if N is a power of two. If someone magically handed us a delicious
set X, we could compute {p(x) | x € X} in O(nlogn) time using the even/odd recursive
structure. Bit reversal permutation, blah blah blah, butterfly network, yadda yadda yadda.

If n is a power of two, then the set of integers {0,1,...,n — 1} is delicious, provided we
perform all arithmetic modulo n. But that only tells us p(x) mod n, and we want the
actual value of p(x). Of course, we can use larger moduli: {0, k,2k,...,(n—1)k} is delicious
mod nk. We can avoid modular arithmetic entirely by using complex roots of unity—the
set {e2™/" | i =0,1,...,n— 1} is delicious! The sequence of values p(ezm/”) is called the
discrete Fourier transform of p.

Finally, to invert this transformation from coefficients to values, we repeat exactly the same
procedure, using the same delicious set but in the opposite order. Blardy blardy, linear
algebra, hi dee hi dee hi dee ho.

Algorithms Non-Lecture 2: Fast Fourier Transforms

Exercises

1. For any two sets X and Y of integers, the Minkowski sum X + Y is the set of all pairwise sums
{x+ylxeX,yeY}.

(a) Describe an analyze and algorithm to compute the number of elements in X +Y in O(n?logn)
time. [Hint: The answer is not always n2.]

(b) Describe and analyze an algorithm to compute the number of elements in X +Y in O(M log M)
time, where M is the largest absolute value of any element of X UY. [Hint: What’s this
lecture about?]

2. (a) Describe an algorithm that determines whether a given set of n integers contains two elements
whose sum is zero, in O(nlogn) time.

(b) Describe an algorithm that determines whether a given set of n integers contains three
elements whose sum is zero, in O(n?) time.

(c) Now suppose the input set X contains only integers between —10000n and 10000n. Describe
an algorithm that determines whether X contains three elements whose sum is zero, in
O(nlogn) time. [Hint: Hint.]

(© Copyright 2009 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

10

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

	Fast Fourier Transforms
	Polynomials
	Alternate Representations
	Roots
	Samples
	Summary

	Converting Between Representations
	The Discrete Fourier Transform
	Divide and Conquer!
	Fast Multiplication
	Inside the FFT

