
Algorithms Lecture 0: Introduction

We should explain, before proceeding, that it is not our object to consider this program with
reference to the actual arrangement of the data on the Variables of the engine, but simply
as an abstract question of the nature and number of the operations required to be perfomed
during its complete solution.

— Ada Augusta Byron King, Countess of Lovelace, translator’s notes for Luigi F. Menabrea,
“Sketch of the Analytical Engine invented by Charles Babbage, Esq.” (1843)

You are right to demand that an artist engage his work consciously, but you confuse two
different things: solving the problem and correctly posing the question.

— Anton Chekhov, in a letter to A. S. Suvorin (October 27, 1888)

The more we reduce ourselves to machines in the lower things,
the more force we shall set free to use in the higher.

— Anna C. Brackett, The Technique of Rest (1892)

0 Introduction

0.1 What is an algorithm?

An algorithm is an explicit, precise, unambiguous, mechanically-executable sequence of elementary
instructions. For example, here is an algorithm for singing that annoying song ‘99 Bottles of Beer on the
Wall’, for arbitrary values of 99:

BOTTLESOFBEER(n):
For i← n down to 1

Sing “i bottles of beer on the wall, i bottles of beer,”
Sing “Take one down, pass it around, i− 1 bottles of beer on the wall.”

Sing “No bottles of beer on the wall, no bottles of beer,”
Sing “Go to the store, buy some more, n bottles of beer on the wall.”

The word ‘algorithm’ does not derive, as algorithmophobic classicists might guess, from the Greek
root algos (αλγoς), meaning ‘pain’. Rather, it is a corruption of the name of the 9th century Persian
mathematician Abū ’Abd Allāh Muh. ammad ibn Mūsā al-Khwārizmı̄.1 Al-Khwārizmı̄ is perhaps best
known as the writer of the treatise Al-Kitāb al-mukhtas.ar f̄ıh̄ısāb al-ğabr wa’l-muqābala2, from which
the modern word algebra derives. The word algorithm is a corruption of the older word algorism (by
false connection to the Greek arithmos (αριθµoς), meaning ‘number’, and perhaps the aforementioned
αλγoς), used to describe the modern decimal system for writing and manipulating numbers—in
particular, the use of a small circle or sifr to represent a missing quantity—which al-Khwārizmı̄ brought
into Persia from India. Thanks to the efforts of the medieval Italian mathematician Leonardo of Pisa,
better known as Fibonacci, algorism began to replace the abacus as the preferred system of commercial
calculation3 in Europe in the late 12th century, although it was several more centuries before cyphers
became truly ubiquitous. (Counting boards were used by the English and Scottish royal exchequers well
into the 1600s.) Thus, until very recently, the word algorithm referred exclusively to pencil-and-paper
methods for numerical calculations. People trained in the reliable execution of these methods were
called—you guessed it—computers.

1‘Mohammad, father of Adbdulla, son of Moses, the Kwārizmian’. Kwārizm is an ancient city, now called Khiva, in the
Khorezm Province of Uzbekistan.

2‘The Compendious Book on Calculation by Completion and Balancing’.
3from the Latin word calculus, meaning literally ‘small rock’, referring to the stones on a counting board, or abacus

1



Algorithms Lecture 0: Introduction

0.2 A Few Simple Examples

Multiplication by compass and straightedge. Although they have only been an object of formal
study for a few decades, algorithms have been with us since the dawn of civilization, for centuries before
Al-Khwārizmı̄ and Fibonacci popularized the cypher. Here is an algorithm, popularized (but almost
certainly not discovered) by Euclid about 2500 years ago, for multiplying or dividing numbers using a
ruler and compass. The Greek geometers represented numbers using line segments of the appropriate
length. In the pseudo-code below, CIRCLE(p, q) represents the circle centered at a point p and passing
through another point q. Hopefully the other instructions are obvious.4

〈〈Construct the line perpendicular to ` and passing through P.〉〉
RIGHTANGLE(`, P):

Choose a point A∈ `
A, B← INTERSECT(CIRCLE(P, A),`)
C , D← INTERSECT(CIRCLE(A, B), CIRCLE(B, A))
return LINE(C , D)

〈〈Construct a point Z such that |AZ |= |AC ||AD|/|AB|.〉〉
MULTIPLYORDIVIDE(A, B, C , D):
α← RIGHTANGLE(LINE(A, C), A)
E← INTERSECT(CIRCLE(A, B),α)
F ← INTERSECT(CIRCLE(A, D),α)
β ← RIGHTANGLE(LINE(E, C), F)
γ← RIGHTANGLE(β , F)
return INTERSECT(γ, LINE(A, C))

A

B

C

Z

D

E
F α


β


γ

Multiplying or dividing using a compass and straightedge.

This algorithm breaks down the difficult task of multiplication into a series of simple primitive
operations: drawing a line between two points, drawing a circle with a given center and boundary point,
and so on. These primitive steps are quite non-trivial to execute on a modern digital computer, but
this algorithm wasn’t designed for a digital computer; it was designed for the Platonic Ideal Classical
Greek Mathematician, wielding the Platonic Ideal Compass and the Platonic Ideal Straightedge. In
this example, Euclid first defines a new primitive operation, constructing a right angle, by (as modern
programmers would put it) writing a subroutine.

Multiplication by duplation and mediation. Here is an even older algorithm for multiplying large
numbers, sometimes called (Russian) peasant multiplication. A variant of this method was copied into
the Rhind papyrus by the Egyptian scribe Ahmes around 1650 BC, from a document he claimed was
(then) about 350 years old. This was the most common method of calculation by Europeans before
Fibonacci’s introduction of Arabic numerals; it was still being used in Russia, along with the Julian
calendar, well into the 20th century. This algorithm was also commonly used by early digital computers
that did not implement integer multiplication directly in hardware.

4Euclid and his students almost certainly drew their constructions on an αβαξ, a table covered in sand (or very small
rocks). Over the next several centuries, the Greek abax evolved into the medieval European abacus.

2



Algorithms Lecture 0: Introduction

PEASANTMULTIPLY(x , y):
prod← 0
while x > 0

if x is odd
prod← prod+ y

x ← bx/2c
y ← y + y

return p

x y prod
0

123 +456 = 456
61 +912 = 1368
30 1824
15 +3648 = 5016
7 +7296 = 12312
3 +14592 = 26904
1 +29184 = 56088

The peasant multiplication algorithm breaks the difficult task of general multiplication into four
simpler operations: (1) determining parity (even or odd), (2) addition, (3) duplation (doubling a
number), and (4) mediation (halving a number, rounding down).5 Of course a full specification of this
algorithm requires describing how to perform those four ‘primitive’ operations. Peasant multiplication
requires (a constant factor!) more paperwork to execute by hand, but the necessary operations are easier
(for humans) to remember than the 10× 10 multiplication table required by the American grade school
algorithm.6

The correctness of peasant multiplication follows from the following recursive identity, which holds
for any non-negative integers x and y:

x · y =







0 if x = 0

bx/2c · (y + y) if x is even

bx/2c · (y + y) + y if x is odd

A bad example. Consider “Martin’s algorithm”:7

BECOMEAMILLIONAIREANDNEVERPAYTAXES:
Get a million dollars.
Don’t pay taxes.
If you get caught,

Say “I forgot.”

Pretty simple, except for that first step; it’s a doozy. A group of billionaire CEOs would consider
this an algorithm, since for them the first step is both unambiguous and trivial, but for the rest of us
poor slobs, Martin’s procedure is too vague to be considered an algorithm. On the other hand, this is a
perfect example of a reduction—it reduces the problem of being a millionaire and never paying taxes to
the ‘easier’ problem of acquiring a million dollars. We’ll see reductions over and over again in this class.
As hundreds of businessmen and politicians have demonstrated, if you know how to solve the easier
problem, a reduction tells you how to solve the harder one.

Martin’s algorithm, like many of our previous examples, is not the kind of algorithm that computer
scientists are used to thinking about, because it is phrased in terms of operations that are difficult
for computers to perform. In this class, we’ll focus (almost!) exclusively on algorithms that can be

5The version of this algorithm actually used in ancient Egypt does not use mediation or parity, but it does use comparisons.
To avoid halving, the algorithm pre-computes two tables by repeated doubling: one containing all the powers of 2 not
exceeding x , the other containing the same powers of 2 multiplied by y. The powers of 2 that sum to x are then found by
greedy subtraction, and the corresponding entries in the other table are added together to form the product.

6American school kids learn a variant of the lattice multiplication algorithm developed by Indian mathematicians and
described by Fibonacci in Liber Abaci. The two algorithms are equivalent if the input numbers are represented in binary.

7S. Martin, “You Can Be A Millionaire”, Saturday Night Live, January 21, 1978. Appears on Comedy Is Not Pretty, Warner
Bros. Records, 1979.

3



Algorithms Lecture 0: Introduction

reasonably implemented on a computer. In other words, each step in the algorithm must be something
that either is directly supported by common programming languages (such as arithmetic, assignments,
loops, or recursion) or is something that you’ve already learned how to do in an earlier class (like sorting,
binary search, or depth first search).

Congressional apportionment. Here is another good example of an algorithm that comes from
outside the world of computing. Article I, Section 2 of the US Constitution requires that

Representatives and direct Taxes shall be apportioned among the several States which may
be included within this Union, according to their respective Numbers. . . . The Number of
Representatives shall not exceed one for every thirty Thousand, but each State shall have at
Least one Representative. . . .

Since there are a limited number of seats available in the House of Representatives, exact proportional
representation is impossible without either shared or fractional representatives, neither of which are
legal. As a result, several different apportionment algorithms have been proposed and used to round
the fractional solution fairly. The algorithm actually used today, called the Huntington-Hill method or
the method of equal proportions, was first suggested by Census Bureau statistician Joseph Hill in 1911,
refined by Harvard mathematician Edward Huntington in 1920, adopted into Federal law (2 U.S.C. §§2a
and 2b) in 1941, and survived a Supreme Court challenge in 1992.8 The input array P[1 .. n] stores the
populations of the n states, and R is the total number of representatives. Currently, n= 50 and R= 435.

APPORTIONCONGRESS(P[1 .. n], R):
H ← NEWMAXHEAP

for i← 1 to n
r[i]← 1
INSERT

�

H, i, P[i]/
p

2
�

R← R− n

while R> 0
s← EXTRACTMAX(H)
r[s]← r[s] + 1

INSERT
�

H, i, P[i]/
p

r[i](r[i] + 1)
�

R← R− 1

return r[1 .. n]

Note that this description assumes that you know how to implement a max-heap and its basic
operations NEWMAXHEAP, INSERT, and EXTRACTMAX. (The actual law doesn’t make those assumptions, of
course.) Moreover, the correctness of the algorithm doesn’t depend at all on how these operations are
implemented. The Census Bureau implements the max-heap as an unsorted array stored in a column of
an Excel spreadsheet; you should have learned a more efficient solution in your undergraduate data
structures class.

8Overruling an earlier ruling by a federal district court, the Supreme Court unanimously held that any apportionment
method adopted in good faith by Congress is constitutional (United States Department of Commerce v. Montana). The
current congressional apportionment algorithm is described in gruesome detail at the U.S. Census Department web site
http://www.census.gov/population/www/censusdata/apportionment/computing.html. A good history of the apportionment
problem can be found at http://www.thirty-thousand.org/pages/Apportionment.htm. A report by the Congressional Research
Service describing various apportionment methods is available at http://www.rules.house.gov/archives/RL31074.pdf.

4

http://www.census.gov/population/www/censusdata/apportionment/computing.html
http://www.thirty-thousand.org/pages/Apportionment.htm
http://www.rules.house.gov/archives/RL31074.pdf


Algorithms Lecture 0: Introduction

0.3 Writing down algorithms

Computer programs are concrete representations of algorithms, but algorithms are not programs; they
should not be described in a particular programming language. The whole point of this course is to
develop computational techniques that can be used in any programming language.9 The idiosyncratic
syntactic details of C, Java, Python, Ruby, Erlang, OcaML, Scheme, Visual Basic, Smalltalk, Javascript,
Forth, TEX, COBOL, Intercal, or Brainfuck10 are of little or no importance in algorithm design, and
focusing on them will only distract you from what’s really going on.11 What we really want is closer to
what you’d write in the comments of a real program than the code itself.

On the other hand, a plain English prose description is usually not a good idea either. Algorithms
have a lot of structure—especially conditionals, loops, and recursion—that are far too easily hidden
by unstructured prose. Like any natural languags, English is full of ambiguities, subtleties, and shades
of meaning, but algorithms must be described as accurately as possible. Finally and more seriously,
many people have a tendency to describe loops informally: “Do this first, then do this second, and so
on.” As anyone who has taken one of those ‘What comes next in this sequence?’ tests already knows,
specifying what happens in the first few iterations of a loop doesn’t say much about what happens in
later iterations.12 Phrases like ‘and so on’ or ‘repeat this for all n’ are good indicators that the algorithm
should have been described in terms of loops or recursion, and the description should have specified a
generic iteration of the loop. Similarly, the appearance of the phrase ‘and so on’ in a proof almost always
means the proof should have been done by induction.

The best way to write down an algorithm is using pseudocode. Pseudocode uses the structure of
formal programming languages and mathematics to break the algorithm into one-sentence steps, but
those sentences can be written using mathematics, pure English, or an appropriate mixture of the two.
Exactly how to structure the pseudocode is a personal choice, but the overriding goal should be clarity
and precision. Here are the guidelines I follow:

• Use standard imperative programming keywords (if/then/else, while, for, repeat/until, case,
return) and notation (variable← value, Array[index], function(argument), bigger> smaller, etc.).
Keywords should be standard English words: write ‘else if’ instead of ‘elif’.

• Use standard mathematical notation for standard mathematical stuff. For example, write
p

x and
ab and π instead of sqrt(x) and power(a, b) and pi. (One exception: never use ∀ to represent a
for-loop!)

• Avoid mathematical notation if English is clearer. For example, ‘Insert a into X ’ is often preferable
to INSERT(X , a) or X ← X ∪ {a}.

9See http://www.ionet.net/~timtroyr/funhouse/beer.html for implementations of the BOTTLESOFBEER algorithm in over
200 different programming languages.

10Brainfuck is the well-deserved name of a programming language invented by Urban Müller in 1993. Brainfuck programs
are written entirely using the punctuation characters <>+-,.[], each representing a different operation (roughly: shift left,
shift right, increment, decrement, input, output, begin loop, end loop). See http://esolangs.org/wiki/Brainfuck for a complete
language description; links to several interpreters, compilers, and sample programs; and lots of related shit.

11This is, of course, a matter of religious conviction. Linguists argue incessantly over the Sapir-Whorf hypothesis, which states
(more or less) that people think only in the categories imposed by their languages. According to an extreme formulation of
this principle, some concepts in one language simply cannot be understood by speakers of other languages, not just because
of technological advancement—How would you translate ‘jump the shark’ or ‘blog’ into Aramaic?—but because of inherent
structural differences between languages and cultures. For a more skeptical view, see Steven Pinker’s The Language Instinct.
There is admittedly some strength to this idea when applied to different programming paradigms. (What’s the Y combinator,
again? How do templates work? What’s an Abstract Factory?) Fortunately, those differences are generally too subtle to have
much impact in this class.

12See http://www.research.att.com/~njas/sequences/.

5

http://www.ionet.net/~timtroyr/funhouse/beer.html
http://esolangs.org/wiki/Brainfuck
http://www.research.att.com/~njas/sequences/


Algorithms Lecture 0: Introduction

• Indent everything carefully and consistently; the block structure should be visible from across
the room. This is especially important for nested loops and conditionals. Don’t use unnecessary
syntactic sugar (like braces or begin/end tags).

• Don’t typeset keywords in a different font or style. Changing type style emphasizes the keywords,
making the reader think the syntactic sugar is important. It isn’t!

• Each statement should fit on one line, and each line should contain either exactly one statement
or exactly one structuring element (for, while, if). (I sometimes make an exception for short and
similar statements like i← i+ 1; j← j− 1; k← 0.)

• Use short, mnemonic algorithm and variable names. Absolutely never use pronouns!

A good description of an algorithm reveals the internal structure, hides irrelevant details, and can be
implemented easily and correctly by any competent programmer in their favorite programming language,
even if they don’t understand why the algorithm works. Good pseudocode, like good code, makes the
algorithm much easier to understand and analyze; it also makes mistakes much easier to spot. The
algorithm descriptions in these lecture notes are (hopefully) good examples of what we want to see on
your homeworks and exams.

0.4 Analyzing algorithms

It’s not enough just to write down an algorithm and say ‘Behold!’ We also need to convince ourselves
(and our graders) that the algorithm does what it’s supposed to do, and that it does it efficiently.

Correctness: In some application settings, it is acceptable for programs to behave correctly most of
the time, on all ‘reasonable’ inputs. Not in this class; we require algorithms that are correct for all
possible inputs. Moreover, we must prove that they’re correct; trusting our instincts, or trying a few test
cases, isn’t good enough.13 Sometimes correctness is fairly obvious, especially for algorithms you’ve
seen in earlier courses. On the other hand, ‘obvious’ is all too often a synonym for ‘wrong’. Many of
the algorithms we will discuss in this course will require some extra work to prove. Correctness proofs
almost always involve induction. We like induction. Induction is our friend.14

But before we can formally prove that our algorithm does what we want it to do, we have to formally
state what we want it to do! Usually problems are given to us in real-world terms, not with formal
mathematical descriptions. It’s up to us, the algorithm designers, to restate these problems in terms of
mathematical objects that we can prove things about—numbers, arrays, lists, graphs, trees, and so on.
We also need to determine if the problem statement makes any hidden assumptions, and state those
assumptions explicitly. (For example, in the song “n Bottles of Beer on the Wall”, n is always a positive
integer.) Restating the problem formally is not only required for proofs; it is also one of the best ways
to really understand what the problems is asking for. The hardest part of answering any question is
figuring out the right way to ask it!

It is important to remember the distinction between a problem and an algorithm. A problem is a
task to perform, like “Compute the square root of x” or “Sort these n numbers” or “Keep n algorithms
students awake for t minutes”. An algorithm is a set of instructions to follow if you want to accomplish
this task. The same problem may have hundreds of different algorithms; the same algorithm may solve
hundreds of different problems.

13I say we take off and nuke the entire site from orbit. It’s the only way to be sure.
14If induction is not your friend, you will have a hard time in this course.

6



Algorithms Lecture 0: Introduction

Running time: The most common way of ranking different algorithms for the same problem is by
how fast they run. Ideally, we want the fastest possible algorithm for our problem. In many application
settings, it is acceptable for programs to run efficiently most of the time, on all ‘reasonable’ inputs. Not
in this class; we require algorithms that always run efficiently, even in the worst case.

But how do we measure running time? As a specific example, how long does it take to sing the song
BOTTLESOFBEER(n)? This is obviously a function of the input value n, but it also depends on how quickly
you can sing. Some singers might take ten seconds to sing a verse; others might take twenty. Technology
widens the possibilities even further. Dictating the song over a telegraph using Morse code might take
a full minute per verse. Downloading an mp3 over the Web might take a tenth of a second per verse.
Duplicating the mp3 in a computer’s main memory might take only a few microseconds per verse.

What’s important here is how the singing time changes as n grows. Singing BOTTLESOFBEER(2n)
takes about twice as long as singing BOTTLESOFBEER(n), no matter what technology is being used. This
is reflected in the asymptotic singing time Θ(n). We can measure time by counting how many times the
algorithm executes a certain instruction or reaches a certain milestone in the ‘code’. For example, we
might notice that the word ‘beer’ is sung three times in every verse of BOTTLESOFBEER, so the number of
times you sing ‘beer’ is a good indication of the total singing time. For this question, we can give an
exact answer: BOTTLESOFBEER(n) uses exactly 3n+ 3 beers.

There are plenty of other songs that have non-trivial singing time. This one is probably familiar to
most English-speakers:

NDAYSOFCHRISTMAS(gifts[2 .. n]):
for i← 1 to n

Sing “On the ith day of Christmas, my true love gave to me”
for j← i down to 2

Sing “ j gifts[ j]”
if i > 1

Sing “and”
Sing “a partridge in a pear tree.”

The input to NDAYSOFCHRISTMAS is a list of n−1 gifts. It’s quite easy to show that the singing time is
Θ(n2); in particular, the singer mentions the name of a gift

∑n
i=1 i = n(n+ 1)/2 times (counting the

partridge in the pear tree). It’s also easy to see that during the first n days of Christmas, my true love
gave to me exactly

∑n
i=1

∑i
j=1 j = n(n+ 1)(n+ 2)/6 = Θ(n3) gifts. Other songs that take quadratic time

to sing are “Old MacDonald had a Farm”, “There Was an Old Lady Who Swallowed a Fly”, “The House
that Jack Built”, “Green Grow the Rushes O”, “Eh, Compare!”, “Alouette”, “Echad Mi Yodea”, “Chad
Gadya”, and “Ist das nicht ein Schnitzelbank?”15 For further details, consult your nearest preschooler.

OLDMACDONALD(animals[1 .. n], noise[1 .. n]):
for i← 1 to n

Sing “Old MacDonald had a farm, E I E I O”
Sing “And on this farm he had some animals[i], E I E I O”
Sing “With a noise[i] noise[i] here, and a noise[i] noise[i] there”
Sing “Here a noise[i], there a noise[i], everywhere a noise[i] noise[i]”
for j← i− 1 down to 1

Sing “noise[ j] noise[ j] here, noise[ j] noise[ j] there”
Sing “Here a noise[ j], there a noise[ j], everywhere a noise[ j] noise[ j]”

Sing “Old MacDonald had a farm, E I E I O.”

15Wakko: Ist das nicht Otto von Schnitzelpusskrankengescheitmeyer?
Yakko and Dot: Ja, das ist Otto von Schnitzelpusskrankengescheitmeyer!!

7



Algorithms Lecture 0: Introduction

ALOUETTE(lapart[1 .. n]):
Chantez « Alouette, gentille alouette, alouette, je te plumerais. »
pour tout i de 1 á n

Chantez « Je te plumerais lapart[i]. Je te plumerais lapart[i]. »
pour tout j de i− 1 á bas á 1

Chantez « Et lapart[ j] ! Et lapart[ j] ! »
Chantez « Ooooooo! »
Chantez « Alouette, gentille alluette, alouette, je te plumerais. »

For a slightly more complicated example, consider the algorithm APPORTIONCONGRESS. Here the
running time obviously depends on the implementation of the max-heap operations, but we can certainly
bound the running time as O(N + RI + (R− n)E), where N is the time for a NEWMAXHEAP, I is the time
for an INSERT, and E is the time for an EXTRACTMAX. Under the reasonable assumption that R> 2n (on
average, each state gets at least two representatives), this simplifies to O(N + R(I + E)). The Census
Bureau uses an unsorted array of size n, for which N = I =Θ(1) (since we know a priori how big the
array is), and E =Θ(n), so the overall running time is Θ(Rn). This is fine for the federal government,
but if we want to be more efficient, we can implement the heap as a perfectly balanced n-node binary
tree (or a heap-ordered array). In this case, we have N = Θ(1) and I = R = O(log n), so the overall
running time is Θ(R log n).

Sometimes we are also interested in other computational resources: space, randomness, page faults,
inter-process messages, and so forth. We use the same techniques to analyze those resources as we use
for running time.

0.5 A Longer Example: Stable Marriage

Every year, thousands of new doctors must obtain internships at hospitals around the United States.
During the first half of the 20th century, competition among hospitals for the best doctors led to earlier
and earlier offers of internships, sometimes as early as the second year of medical school, along with
tighter deadlines for acceptance. In the 1940s, medical schools agreed not to release information until a
common date during their students’ fourth year. In response, hospitals began demanding faster decisions.
By 1950, hospitals would regularly call doctors, offer them an internship, and demand an immediate
response. Interns were forced to gamble if their third-choice hospital called first—accept and risk losing
a better opportunity later, or reject and risk having no position at all.

Finally, a central clearinghouse for internship assignments, now called the National Resident Matching
Program, was established in the early 1950s. Each year, doctors submit a ranked list of all hospitals
where they would accept an internship, and each hospital submits a ranked list of doctors they would
accept as interns. The NRMP then computes an assignment of interns to hospitals that satisfies the
following stability requirement. For simplicity, let’s assume that there are n doctors and n hospitals; each
hospital offers exactly one internship; each doctor ranks all hospitals and vice versa; and finally, there
are no ties in the doctors’ and hospitals’ rankings.16 We say that a matching of doctors to hospitals is
unstable if there are two doctors α and β and two hospitals A and B, such that

• α is assigned to A, and β is assigned to B;

• α prefers B to A, and B prefers α to β .

In other words, α and B would both be happier with each other than with their current assignment. The
goal of the Resident Match is a stable matching, in which no doctor or hospital has an incentive to cheat
the system. At first glance, it is not clear that a stable matching exists!

16In reality, most hospitals offer multiple internships, Each doctor ranks only a subset of the hospitals and vice versa, and
there are typically more internships than interested doctors. And then it starts getting complicated.

8



Algorithms Lecture 0: Introduction

In 1952, the NRMP adopted the “Boston Pool” algorithm to assign interns, so named because it
had been previously used by a regional clearinghouse in the Boston area. The algorithm is often
inappropriately attributed to David Gale and Lloyd Shapley, who formally analyzed the algorithm and
first proved that it computes a stable matching in 1962.17 The algorithm proceeds in rounds until every
position has been filled. In each round:

1. Some unassigned hospital offers its position to the best doctor (according to the hospital’s prefer-
ence list) who has not already rejected it.

2. Each doctor is always assigned to the best hospital (according to the doctor’s preference list) that
has made her an offer so far. Thus, whenever a doctor receives an offer that she likes more than
her current assignment, her assignment changes.

For example, suppose there are three doctors α, β , γ, δ, and three hospitals A, B, C , D with the
following preference lists:

α β γ δ A B C D
A A B D δ β δ γ

B D A B γ δ α β

C C C C β α β α

D B D A α γ γ δ

The algorithm might proceed as follows:

1. A makes an offer to δ.

2. B makes an offer to β .

3. C makes an offer to δ, who rejects her earlier offer from A.

4. D makes an offer to γ. (From this point on, because there is only one unmatched hospital, the
algorithm has no more choices.)

5. A makes an offer to γ, who rejects her earlier offer from D.

6. D makes an offer to β , who rejects her earlier offer from B.

7. B makes an offer to δ, who rejects her earlier offer from C .

8. C makes an offer to α.

At this point we have the assignment (α, C), (β , D), (γ, A), (δ, B). You can verify by brute force that this
matching is stable, despite the fact that no doctor was hired by her favorite hospital, and no hospital
hired its favorite doctor.

Analyzing the algorithm is straightforward. Since each hospital makes an offer to each doctor at most
once, the algorithm requires at most n2 rounds. In an actual implementation, each doctor and hospital
can be identified by a unique integer between 1 and n, and the preference lists can be represented as two
arrays DocPref[1 .. n][1 .. n] and HosPref[1 .. n][1 .. n], where DocPref[α][r] represents the rth hospital

17Gale and Shapely used the metaphor of college admissions. The “Gale-Shapely algorithm” is a prime instance of Stigler’s
Law of Eponymy: No scientific discovery is named after its original discoverer. In his 1980 paper that gives the law its name,
the statistician Stephen Stigler claimed that this law was first proposed by sociologist Robert K. Merton, although similar
sentiments were previously attributed to Vladimir Arnol’d in the 1970’s (“Discoveries are rarely attributed to the correct
person.”), Carl Boyer in 1968 (“Clio, the muse of history, often is fickle in attaching names to theorems!”), Alfred North
Whitehead in 1917 (“Everything of importance has been said before by someone who did not discover it.”), and even Stephen’s
father George Stigler in 1966 (“If we should ever encounter a case where a theory is named for the correct man, it will be
noted.”)! The law was dubbed the Zeroth Theorem of the History of Science by historian Ernst Peter Fischer in 2006 (“[E]ine
Entdeckung (Regel, Gesetzmässigkeit, Einsicht), die nach einer Person benannt ist, nicht von dieser Person herrührt.”) .

9



Algorithms Lecture 0: Introduction

in doctor α’s preference list, and HosPref[A][r] represents the rth doctor in hospital A’s preference list.
With the input in this form, the Boston Pool algorithm can be implemented to run in O(n2) time; we
leave the details as an exercise for the reader. A somewhat harder exercise is to prove that there are
inputs (and choices of who makes offers when) that force Ω(n2) rounds before the algorithm terminates.

But why is it correct? Gale and Shapely prove that the Boston Pool algorithm always computes a
stable matching as follows. The algorithm must terminate, because each hospital makes an offer to each
doctor at most once. When the algorithm terminates, every internship has been filled. Now suppose in
the final matching, doctor α is assigned to hospital A but prefers B. Since every doctor accepts the best
offer she receives, α received no offer she liked more than A. In particular, B never made an offer to α.
On the other hand, B made offers to every doctor they like more than β . Thus, B prefers β to α, and so
there is no instability.

Surprisingly, the correctness of the algorithm does not depend on which hospital makes its offer
in which round. In fact, there is a stronger sense in which the order of offers doesn’t matter—no
matter which unassigned hospital makes an offer in each round, the algorithm always computes the same
matching! Let’s say that α is a feasible doctor for A if there is a stable matching that assigns doctor α to
hospital A, and let best(A) be the highest-ranked feasible doctor on A’s preference list.

Lemma 1. The Boston Pool algorithm assigns best(A) to A, for every hospital A.

Proof: In the final matching, no hospital A is assigned a doctor they prefer to best(A), because that
would create an instability (by definition of ‘feasible’ and ‘best’). A hospital A can only be assigned a
doctor they like less than best(A) if best(A) rejects their offer.

So consider the first round where some hospital A is rejected by its best choice α= best(A). In that
round, α got an offer from another hospital B that α ranks higher than A. Now, B must rank α at least as
highly as its best choice best(B), because this is the first round where a hospital is rejected by its best
choice. Thus, B must rank α higher than any doctor that is feasible for B.

Now consider the stable matching where α is assigned to A. On the one hand, α prefers B to A. On
the other hand, because this is a stable matching, B is assigned a doctor β that is feasible for B, which
implies that B prefers α to β . But this means the matching is unstable, and we have a contradiction. �

In other words, from the hospitals’ point of view, the Boston Pool algorithm computes the best
possible stable matching. It turns out that this is also the worst possible matching from the doctors’
viewpoint! Let worst(α) be the lowest-ranked feasible hospital on doctor α’s preference list.

Lemma 2. The Boston Pool algorithm assigns α to worst(α), for every doctor α.

Proof: Suppose the Boston Pool algorithm assigns doctor α to hospital A; the previous lemma implies
that α= best(A). To prove the lemma, we need to show that A= worst(α).

Consider an arbitrary stable matching where A is not matched with α but with another doctor β .
Then A must prefer α to β . Since this matching is stable, α must therefore prefer her current assignment
to A. This argument works for any stable assignment, so α prefers every other feasible match to A; in
other words, A= worst(α). �

In 1998, the National Residency Matching Program reversed its matching algorithm, so that potential
residents offer to work for hospitals, and each hospital accepts its best offer. Thus, the new algorithm
computes the best possible stable matching for the doctors, and the worst possible stable matching for
the hospitals. As far as I know, the precise effect of this change on the patients is an open problem.

10



Algorithms Lecture 0: Introduction

0.6 Why are we here, anyway?

This class is ultimately about learning two skills that are crucial for all computer scientists.

1. Reasoning: How to think about abstract computation.

2. Communication: How to talk about abstract computation.

The first goal of this course is to help you develop algorithmic intuition. How do various algorithms
really work? When you see a problem for the first time, how should you attack it? How do you tell
which techniques will work at all, and which ones will work best? How do you judge whether one
algorithm is better than another? How do you tell whether you have the best possible solution? These
are not easy questions. Anyone who says differently is selling something.

Our second main goal is to help you develop algorithmic language. It’s not enough just to understand
how to solve a problem; you also have to be able to explain your solution to somebody else. I don’t mean
just how to turn your algorithms into working code—despite what many students (and inexperienced
programmers) think, ‘somebody else’ is not just a computer. Nobody programs alone. Code is read far
more often than it is written, or even compiled. Perhaps more importantly in the short term, explaining
something to somebody else is one of the best ways to clarify your own understanding. As Albert Einstein
(or was it Richard Feynman?) apocryphally put it, “You do not really understand something unless you
can explain it to your grandmother."

Along the way, you’ll pick up a bunch of algorithmic facts—mergesort runs in Θ(n log n) time; the
amortized time to search in a splay tree is O(log n); greedy algorithms usually don’t produce optimal
solutions; the traveling salesman problem is NP-hard—but these aren’t the point of the course. You
can always look up mere facts in a textbook or on the web, provided you have enough intuition and
experience to know what to look for. That’s why we let you bring cheat sheets to the exams; we don’t
want you wasting your study time trying to memorize all the facts you’ve seen.

You’ll also practice a lot of algorithm design and analysis skills—finding useful (counter)examples,
developing induction proofs, solving recurrences, using big-Oh notation, using probability, giving
problems crisp mathematical descriptions, and so on. These skills are incredibly useful, and it’s impossible
to develop good intuition and good communication skills without them, but they aren’t the main point
of the course either. At this point in your educational career, you should be able to pick up most of those
skills on your own, once you know what you’re trying to do.

Unfortunately, there is no systematic procedure—no algorithm—to determine which algorithmic
techniques are most effective at solving a given problem, or finding good ways to explain, analyze,
optimize, or implement a given algorithm. Like many other activities (music, writing, juggling, acting,
martial arts, sports, cooking, programming, teaching, etc.), the only way to master these skills is to make
them your own, through practice, practice, and more practice. You can only develop good problem-
solving skills by solving problems. You can only develop good communication skills by communicating.
Good intuition is the product of experience, not its replacement. We can’t teach you how to do well in
this class. All we can do (and what we will do) is lay out some fundamental tools, show you how to use
them, create opportunities for you to practice with them, and give you honest feedback, based on our
own hard-won experience and intuition. The rest is up to you.

Good algorithms are extremely useful, elegant, surprising, deep, even beautiful. But most importantly,
algorithms are fun!! I hope this course will inspire at least some you to come play!

11



Algorithms Lecture 0: Introduction

Boethius the algorist versus Pythagoras the abacist.
from Margarita Philosophica by Gregor Reisch (1503)

12



Algorithms Lecture 0: Introduction

Exercises

0. Describe and analyze an algorithm that determines, given a legal arrangement of standard pieces
on a standard chess board, which player will win at chess from the given starting position if both
players play perfectly. [Hint: There is a one-line solution!]

1. The traditional Devonian/Cornish drinking song “The Barley Mow” has the following pseu-
dolyrics18, where container[i] is the name of a container that holds 2i ounces of beer. One version
of the song uses the following containers: nipperkin, gill pot, half-pint, pint, quart, pottle, gallon,
half-anker, anker, firkin, half-barrel, barrel, hogshead, pipe, well, river, and ocean. (Every container
in this list is twice as big as its predecessor, except that a firkin is actually 2.25 ankers, and the last
three units are just silly.)

BARLEYMOW(n):
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

“We’ll drink it out of the jolly brown bowl,”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

for i← 1 to n
“We’ll drink it out of the container[i], boys,”
“Here’s a health to the barley-mow!”
for j← i downto 1

“The container[ j],”
“And the jolly brown bowl!”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

(a) Suppose each container name container[i] is a single word, and you can sing four words
a second. How long would it take you to sing BARLEYMOW(n)? (Give a tight asymptotic
bound.)

(b) If you want to sing this song for n> 20, you’ll have to make up your own container names.
To avoid repetition, these names will get progressively longer as n increases19. Suppose
container[n] has Θ(log n) syllables, and you can sing six syllables per second. Now how long
would it take you to sing BARLEYMOW(n)? (Give a tight asymptotic bound.)

(c) Suppose each time you mention the name of a container, you actually drink the corresponding
amount of beer: one ounce for the jolly brown bowl, and 2i ounces for each container[i].
Assuming for purposes of this problem that you are at least 21 years old, exactly how many
ounces of beer would you drink if you sang BARLEYMOW(n)? (Give an exact answer, not just
an asymptotic bound.)

18Pseudolyrics are to lyrics as pseudocode is to code.
19“We’ll drink it out of the hemisemidemiyottapint, boys!”

13



Algorithms Lecture 0: Introduction

2. Recall that the input to the Huntington-Hill apportionment algorithm APPORTIONCONGRESS is an
array P[1 .. n], where P[i] is the population of the ith state, and an integer R, the total number
of representatives to be allotted. The output is an array r[1 .. n], where r[i] is the number of
representatives allotted to the ith state by the algorithm.

Let P =
∑n

i=1 P[i] denote the total population of the country, and let r∗i = P[i] · R/P denote
the ideal number of representatives for the ith state.

(a) Prove that r[i]≥ br∗i c for all i.

(b) Describe and analyze an algorithm that computes exactly the same congressional apportion-
ment as APPORTIONCONGRESS in O(n log n) time. (Recall that the running time of APPORTION-
CONGRESS depends on R, which could be arbitrarily larger than n.)

(c) If a state’s population is small enough relative to the other states, its ideal number r∗i of
representatives could be very close to zero; thus, tiny states are over-represented by the
Huntington-Hill apportionment process. Surprisingly, this can also be true of very large
states. Let α= (1+

p
2)/2≈ 1.20710678119. Prove that for any ε > 0, there is an input to

APPORTIONCONGRESS with maxi P[i] = P[1], such that r[1]> (α− ε) r∗1 .
Æ(d) Can you improve the constant α in the previous question?

3. Describe and analyze the Boston Pool stable matching algorithm in more detail, so that the
worst-case running time is O(n2).

4. Consider a generalization of the stable matching problem, where some doctors do not rank all
hospitals and some hospitals do not rank all doctors, and a doctor can be assigned to a hospital
only if each appears in the other’s preference list. In this case, there are three additional unstable
situations:

• A hospital prefers an unmatched doctor to its assigned match.

• A doctor prefers an unmatched hospital to its assigned match.

• An unmatched doctor and an unmatched hospital each appear in the other’s preference list.

Describe and analyze an efficient algorithm that computes a stable matching in this setting.

Note that a stable matching may leave some doctors and hospitals unmatched, even though
their preference lists are non-empty. For example, if every doctor lists Harvard as their only
acceptable hospital, and every hospital lists Doogie as their only acceptable intern, then only
Doogie and Harvard will be matched.

c© Copyright 2009 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

14

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

	Introduction
	What is an algorithm?
	A Few Simple Examples
	Writing down algorithms
	Analyzing algorithms
	A Longer Example: Stable Marriage
	Why are we here, anyway?


