
Chapter 2

Fast Fourier Transform
By Sariel Har-Peled, August 31, 2023

①
 Version: 0.3

“But now, reflecting further, there begins to creep into his breast a touch of fellow-feeling for his imitators. For it seems to
him now that there are but a handful of stories in the world; and if the young are to be forbidden to prey upon the old then they
must sit for ever in silence.”

– J.M. Coetzee,

2.1. Introduction
Here, we are interested in the following problem. Given two polynomials

p(x) =
n−1∑
i=0

αixi and q(x) =
n−1∑
j=i

β jx j,

we want to compute the product polynomial q(x) =
∑n−1

0
∑n−1

0 αiβ jxix j. A better formula for q(x) is

q(x) =
2n−2∑
k=0

 ∑
i, j:i+ j=k

αiβ j

xk =

2n−2∑
k=0

min(n−1,k)∑
i=max[0,k−(n−1)]

αiβk−ixk.

Naively, computing q(x) takes quadratic time, but we will show here how to do it in O(n log n) time.

2.1.1. Polynomials
In this chapter, we will address the problem of multiplying two polynomials quickly.

Definition 2.1.1. A polynomial p(x) of degree n is a function of the form p(x) =
∑n

j=0 a jx j. Such a polynomial
has degree n.

Note, that given a value x0, a polynomial p(x) of degree n, can be evaluated at x0 (i.e., p(x0)) in O(n) time.
Somewhat confusingly, a polynomial p(x) =

∑
i aixi of degree n is defined by n + 1 coefficients a0, a1, . . . , an.

Informally, it has n + 1 degrees of freedom.
We need several standard results about polynomials – we state them without proof (or sketchy proofs).

These are standard theorems and their proofs can be found in any standard math textbook.

Lemma 2.1.2. If for polynomial p(x) of degree n, we have that p(α) = 0, for some α ∈ R, then p(x) =
(x − α)g(x), where g is a polynomial of degree n − 1.

Proof: (Sketch) It is easy to verify that any polynomial p of degree n can be written as p(x) = (x − α)g(x) + β.
But since p(α) = 0, it must be that β = 0.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Lemma 2.1.3. For polynomial p(x) of degree n, there are at most n distinct values α1, α2, . . . , αn such that
p(αi) = 0, for all i. In particular, if there are more than n values where p vanishes, then p(x) = 0 (i.e., it is the
zero polynomial).

Proof: The claim is obvious is p(x) is of degree 0 or 1. Otherwise, by Lemma 2.1.2 , we have that p(x) =
(x − α1)g(x), where g is of degree n − 1. The polynomial g has at most n − 1 values where it vanishes by
induction, which readily implies the claim.

As for the second part, arguing similarly, if p vanishes on n + 1 distinct values, α1, . . . , αn+1, then it can
be written as p(x) = g(x)

∏n−1
i=1 (x − αi), where g(x) is a polynomial of degree at least zero. But that is a

contradiction, as this would imply that p(x) is of degree at least n + 1.

There is a “dual” (and equivalent) representation of a polynomial. We sample its value in enough points,
and store the values of the polynomial at those points. The following theorem states this formally. We omit the
proof as you should have seen it already at some earlier math class.

Theorem 2.1.4. For any set
{
(x0, y0), (x1, y1), . . . , (xn−1, yn−1)

}
of n point-value pairs, such that all the xk values

are distinct, there is a unique polynomial p(x) of degree n − 1, such that yk = p(xk), for k = 0, . . . , n − 1.

An explicit formula for p(x) as a function of those point-value pairs is

p(x) =
n−1∑
i=0

yi

∏
j,i(x − x j)∏
j,i(xi − x j)

.

Note, that the ith term in this summation is zero for X = x0, . . . , xi−1, xi+1, . . . , xn−1, and is equal to yi for x = xi.
It is easy to verify that given n point-value pairs, we can compute p(x) in O(n2) time (using the above

formula).
The point-value pairs representation has the advantage that we can multiply two polynomials quickly. In-

deed, if we have two polynomials p and q of degree n − 1, both represented by 2n (we are using more points
than we need) point-value pairs{

(x0, y0), (x1, y1), . . . , (x2n−1, y2n−1)
}

for p(x),
and
{
(x0, y′0), (x1, y′1), . . . , (x2n−1, y′2n−1)

}
for q(x).

Let r(x) = p(x)q(x) be the product of these two polynomials. Computing r(x) directly requires O(n2) using the
naive algorithm. However, in the point-value representation we have, that the representation of r(x) is{

(x0, r(x0)), . . . , (x2n−1, r(x2n−1))
}
=
{
(x0, p(x0)q(x0)), . . . , (x2n−1, p(x2n−1)q(x2n−1))

}
=
{
(x0, y0y′0), . . . , (x2n−1, y2n−1y′2n−1)

}
.

Namely, once we computed the representation of p(x) and q(x) using point-value pairs, we can multiply the
two polynomials in linear time. Furthermore, we can compute the standard representation of r(x) from this
representation.

Thus, if could translate quickly (i.e., O(n log n) time) from the standard representation of a polynomial to
point-value pairs representation, and back (to the regular representation) then we could compute the product of
two polynomials in O(n log n) time. The Fast Fourier Transform is a method for doing exactly this. It is based
on the idea of choosing the xi values carefully and using divide and conquer.

2

FFTAlg(p, X)
input: p(x): A polynomial of degree n: p(x) =

∑n−1
i=0 aixi

X: A collapsible set of n elements.
output: p(X)

begin
u(y) =

∑n/2−1
i=0 a2iyi

v(y) =
∑n/2−1

i=0 a1+2iyi.
Y = SQ(X) =

{
x2
∣∣∣ x ∈ X

}
.

U = FFT Alg(u,Y) /* U = u(Y) */
V = FFT Alg(v, Y) /* V = v(Y) */

Out ← ∅
for x ∈ A do

/* p(x) = u(x2) + x ∗ v(x2) */
/* U[x2] is the value u(x2) */
(x, p(x))←

(
x,U[x2] + x · V[x2]

)
Out ← Out ∪ {(x, p(x))}

return Out
end

Figure 2.1: The FFT algorithm.

2.2. Computing a polynomial quickly on n values

In the following, we are going to assume that the polynomial we work on has degree n − 1, where n = 2k. If
this is not true, we can pad the polynomial with terms having zero coefficients.

Assume that we magically were able to find a set of numbers Ψ = {x1, . . . , xn}, so that it has the following
property: |SQ(Ψ)| = n/2, where SQ(Ψ) =

{
x2
∣∣∣ x ∈ Ψ}. Namely, when we square the numbers of Ψ, we remain

with only n/2 distinct values, although we started with n values. It is quite easy to find such a set.
What is much harder is to find a set that have this property repeatedly. Namely, SQ(SQ(Ψ)) would have

n/4 distinct values, SQ(SQ(SQ(Ψ))) would have n/8 values, and SQi(Ψ) would have n/2i distinct values.
Predictably, maybe, it is easy to show that there is no such set of real numbers (verify...). But let us for the

time being ignore this technicality, and fly, for a moment, into the land of fantasy, and assume that we do have
such a set of numbers, so that |SQi(Ψ)| = n/2i numbers, for i = 0, . . . , k. Let us call such a set of numbers
collapsible.

Given a set of numbers X = {x0, . . . , xn} and a polynomial p(x), let

p(X) =
〈
(x0, p(x0)), . . . ,

(
xn, p(xn)

)〉
.

Furthermore, let us rewrite p(x) =
∑n−1

i=0 aixi as p(x) = u(x2) + x · v(x2), where

u(y) =
n/2−1∑

i=0

a2iyi and v(y) =
n/2−1∑

i=0

a1+2iyi.

Namely, we put all the even degree terms of p(x) into u(·), and all the odd degree terms into v(·). The maximum
degree of the two polynomials u(y) and v(y) is n/2.

3

We are now ready for the kill: To compute p(Ψ) for Ψ, which is a collapsible set, we have to compute
u(SQ(Ψ)), v(SQ(Ψ)). Namely, once we have the value-point pairs of u(SQ(A)), v(SQ(A)) we can, in linear
time, compute p(Ψ). But, SQ(Ψ) have n/2 values because we assumed that Ψ is collapsible. Namely, to
compute n point-value pairs of p(·), we have to compute n/2 point-value pairs of two polynomials of degree
n/2 over a set of n/2 numbers.

Namely, we reduce a problem of size n into two problems of size n/2. The resulting algorithm is depicted
in Figure 2.1 .

What is the running time of FFTAlg? Well, clearly, all the operations except the recursive calls takes
O(n) time (assume, for the time being, that we can fetch U[x2] in O(1) time). As for the recursion, we call
recursively on a polynomial of degree n/2 with n/2 values (Ψ is collapsible!). Thus, the running time is
T (n) = 2T (n/2) + O(n), which is O

(
n log n

)
– exactly what we wanted.

2.2.1. Generating collapsible sets
Nice! But how do we resolve this “technicality” of not having collapsible set? It turns out that if we work over
the complex numbers (instead of over the real numbers), then generating collapsible sets is quite easy. Describ-
ing complex numbers is outside the scope of this writeup, and we assume that you already have encountered
them before. Nevertheless a quick reminder is provided in Section 2.4.2 . Everything you can do over the real
numbers you can do over the complex numbers, and much more (complex numbers are your friend).

In particular, the polynomial xn = 1 has n distinct solutions over the complex numbers. Let γ j(n) denote
the jth such solution, depicted in Figure 2.2 . In particular, the n roots of unity are

γ j(n) = cos
(
2π

j
n

)
+ i sin

(
2π

j
n

)
for j = 0, . . . , n − 1.

Note that γ j(n) =
(
γ1(n)

) j
, and γ j+n(n) = γ j(n), for all j. As such, the n roots of unity form a cyclic group under

multiplication, with γ1(n) being a generator. Also, observe that

γ j(n)γn− j(n) = 1 =⇒
1
γ j(n)

= γn− j(n). (2.1)

Let A(n) =
{
γ0(n), . . . , γn−1(n)

}
. It is easy to verify that |SQ(A(n))| has exactly n/2 elements. Specifically,

we have that SQ(A(n)) = A(n/2), as can be easily verified. Namely, if we pick n to be a power of 2, thenA(n)
is the required collapsible set.

Theorem 2.2.1. Given polynomial p(x) of degree n, where n is a power of two, then we can compute p(X) in
O(n log n) time, where X = A(n) is the set of n roots of unity over the complex numbers.

We can now multiply two polynomials quickly by transforming them to the point-value pairs representation
over the n roots of unity, but we still have to transform this representation back to the regular representation.

2.3. Recovering the polynomial
This part of the writeup is somewhat more technical. Putting it shortly, we are going to apply the FFTAlg
algorithm once again to recover the original polynomial. The details follow.

4

It turns out that we can interpret the FFT as a matrix multiplication operator. Indeed, if we have p(x) =∑n−1
i=0 aixi then evaluating p(·) onA(n) is equivalent to:


y0

y1

y2
...

yn−1


=



1 γ0 γ2
0 γ3

0 · · · γn−1
0

1 γ1 γ2
1 γ3

1 · · · γn−1
1

1 γ2 γ2
2 γ3

2 · · · γn−1
2

1 γ3 γ2
3 γ3

3 · · · γn−1
3

...
...

...
... · · ·

...
1 γn−1 γ

2
n−1 γ

3
n−1 · · · γ

n−1
n−1

︸ ︷︷ ︸
the matrix V



a0

a1

a2

a3
...

an−1


,

where γ j = γ j(n) = (γ1(n)) j, and y j = p(γ j).
This matrix V is quite interesting, and is the Vandermonde matrix. Let V−1 be the inverse matrix of this

Vandermonde matrix. And let multiply the above formula from the left. We get:

a0

a1

a2

a3
...

an−1


= V−1


y0

y1

y2
...

yn−1


.

Namely, we can recover the polynomial p(x) from the point-value pairs{
(γ0, p(γ0)), (γ1, p(γ1)), . . . , (γn−1, p(γn−1))

}
by doing a single matrix multiplication of V−1 by the vector [y0, y1, . . . , yn−1]. However, multiplying a vector
with n entries with a matrix of size n × n takes O(n2) time. Thus, so far there is no benefit.

However, since the Vandermonde matrix is so well behaved

②
 , it is not too hard to figure out the inverse

matrix.

Claim 2.3.1. Let V be the n × n Vandermonde matrix. We have that

V−1 =
1
n



1 β0 β2
0 β3

0 · · · βn−1
0

1 β1 β2
1 β3

1 · · · βn−1
1

1 β2 β2
2 β3

2 · · · βn−1
2

1 β3 β2
3 β3

3 · · · βn−1
3

...
...

...
... · · ·

...
1 βn−1 β

2
n−1 β

3
n−1 · · · β

n−1
n−1


,

where β j = 1/γ j(n) = γn− j(n), see Eq. (2.1) .

Proof: Consider the (u, v) entry in the matrix C = V−1V . We have

Cu,v =

n−1∑
j=0

(βu) j(γ j)v

n
.

②Not to mention famous, beautiful and well known – in short a celebrity matrix.

5

1

γ1(8) = β7(8)

γ2(8) = β6(8) = i

γ3(8) = β5(8)

γ
4
(8
)
=

β
4
(8
)
=

−
1

γ5(8) = β3(8)

γ6(8) = β2(8) = −i

γ7(8) = β1(8)

1

γ1(4) = β3(4) = i

γ
2
(4
)
=

β
2
(4
)
=

−
1

γ3(4) = β1(4) = −i

(A) (B) (C)

Figure 2.2: (A) The 16 roots of unity. (B) The 8 roots of unity. (C) The 4 roots of unity.

We use here that γ j = (γ1) j as can be easily verified. Thus,

Cu,v =

n−1∑
j=0

(βu) j((γ1) j)v

n
=

n−1∑
j=0

(βu) j((γ1)v) j

n
=

n−1∑
j=0

(βuγv) j

n
.

Clearly, if u = v then

Cu,u =
1
n

n−1∑
j=0

(βuγu) j =
1
n

n−1∑
j=0

(1) j =
n
n
= 1.

If u , v then,

βuγv = (γu)−1γv = (γ1)−uγv
1 = (γ1)v−u = γv−u.

And

Cu,v =
1
n

n−1∑
j=0

(γv−u) j =
1
n
·
γn

v−u − 1
γv−u − 1

=
1
n
·

1 − 1
γv−u − 1

= 0,

this follows by the formula for the sum of a geometric series, and as γv−u is an nth root of unity, and as such if
we raise it to power n we get 1.

We just proved that the matrix C have ones on the diagonal and zero everywhere else. Namely, it is the
identity matrix, establishing our claim that the given matrix is indeed the inverse matrix to the Vandermonde
matrix.

Let us recap, given n point-value pairs {(γ0, y0), . . . , (γn−1, yn−1)} of a polynomial p(x) =
∑n−1

i=0 aixi over
the set of nth roots of unity, then we can recover the coefficients of the polynomial by multiplying the vector

6

[y0, y1, . . . , yn] by the matrix V−1. Namely,


a0

a1

a2
...

an−1


=

1
n



1 β0 β2
0 β3

0 · · · βn−1
0

1 β1 β2
1 β3

1 · · · βn−1
1

1 β2 β2
2 β3

2 · · · βn−1
2

1 β3 β2
3 β3

3 · · · βn−1
3

...
...

...
... · · ·

...
1 βn−1 β

2
n−1 β

3
n−1 · · · β

n−1
n−1

︸ ︷︷ ︸
V−1



y0

y1

y2

y3
...

yn−1


.

Let us write a polynomial W(x) =
n−1∑
i=0

(yi/n)xi. It is clear that ai = W(βi). That is to recover the coefficients of

p(·), we have to compute a polynomial W(·) on n values: β0, . . . , βn−1.
The final stroke, is to observe that {β0, . . . , βn−1} = {γ0, . . . , γn−1}; indeed βn

i = (γ−1
i)n = (γn

i)−1 = 1−1 = 1.
Namely, we can apply the FFTAlg algorithm on W(x) to compute a0, . . . , an−1.

We conclude:

Theorem 2.3.2. Given n point-value pairs of a polynomial p(x) of degree n − 1 over the set of n powers of the
nth roots of unity, we can recover the polynomial p(x) in O(n log n) time.

Theorem 2.3.3. Given two polynomials of degree n, they can be multiplied in O(n log n) time.

2.4. The Convolution Theorem
Given two vectors: A = [a0, a1, . . . , an] and B = [b0, . . . , bn], their dot product is the quantity

A · B = ⟨A, B⟩ =
n∑

i=0

aibi.

Let Ar denote the shifting of A by n − r locations to the left (we pad it with zeros; namely, a j = 0 for j <
{0, . . . , n}).

Ar =
[
an−r, an+1−r, an+2−r, . . . , a2n−r

]
where a j = 0 if j < [0, . . . , n].

Observation 2.4.1. An = A.

Example 2.4.2. For A = [3, 7, 9, 15], n = 3
A2 = [7, 9, 15, 0],
A5 = [0, 0, 3, 7].

Definition 2.4.3. Let ci = Ai · B =
∑2n−i

j=n−i a jb j−n+i, for i = 0, . . . , 2n. The vector [c0, . . . , c2n] is the convolution
of A and B.

Question 2.4.4. How to compute the convolution of two vectors of length n?

Definition 2.4.5. The resulting vector [c0, . . . , c2n] is the convolution of A and B.

7

Let p(x) =
∑n

i=0 αixi, and q(x) =
∑n

i=0 βixi. The coefficient of xi in r(x) = p(x)q(x) is

di =

i∑
j=0

α jβi− j.

On the other hand, we would like to compute ci = Ai · B =
∑2n−i

j=n−i a jb j−n+i, which seems to be a very similar
expression. Indeed, setting αi = ai and βl = bn−l−1 we get what we want.

To understand whats going on, observe that the coefficient of x2 in the product of the two respective poly-
nomials p(x) = a0 + a1x + a2x2 + a3x3 and q(x) = b0 + b1x + b2x2 + b3x3 is the sum of the entries on the anti
diagonal in the following matrix, where the entry in the ith row and jth column is aib j.

a0+ a1x +a2x2 +a3x3

b0 a2b0x2

+b1x a1b1x2

+b2x2 a0b2x2

+b3x3

Theorem 2.4.6. Given two vectors A = [a0, a1, . . . , an], B = [b0, . . . , bn] one can compute their convolution in
O(n log n) time.

Proof: Let p(x) =
∑n

i=0 an−ixi and let q(x) =
∑n

i=0 bixi. Compute r(x) = p(x)q(x) in O(n log n) time using the
convolution theorem. Let c0, . . . , c2n be the coefficients of r(x). It is easy to verify, as described above, that
[c0, . . . , c2n] is the convolution of A and B.

2.4.1. Application for convolutions: String matching
Given a string t = t1t2 . . . tn ∈ Σ

∗ and a pattern p = p1 . . . , pm ∈ Σ
∗, say both over a finite alphabet Σ. The

problem is to find all location j, such that T j = t jtt+1 . . . t j+m−1 is identical to p. Namely, we are interested in
finding all the locations such that p appears in the string t. Here, we consider each character in Σ to be a distinct
(say positive) integer. A somewhat strange approach to the problem is to compute the distance that string T j

has from p, specifically

α j =

m∑
i=1

(t j+i−1 − pi)2 =

m∑
i=1

t2
j+i−1 − 2

m∑
i=1

t j+i−1 pi +

m∑
i=1

p2
i

We (pre)compute the following quantities

β j =

j∑
i=1

t2
j = t2

j + β j−1, for j = 1, . . . , n.

All the βs can be computed in linear time. Similarly, let P =
∑m

i=1 p2
i . Finally, the quantities

τ j =

m∑
i=1

t j+i−1 pi

are just the convolutions of the “vector” t with the vector p, which can be computed in O(n log n) time (with
minor cleverness in O(n log m) time [think how!]). Thus, we can compute all the α js in O(n log n) time, for all
js, since

α j = β j+m−1 − β j−1 − 2τ j + P.

Clearly T j = p ⇐⇒ α j = 0. We thus get the following.

8

Lemma 2.4.7. Given a string t of length n, and a pattern p of length m, one can compute all the locations in t
that contains the string p, in O(n log m) time.

The above result is not very interesting, because DFAs can also do this in linear time, and can be simulated
in linear time. However, consider the variant where we add ’?’ – that is, you are allowed to use, both in the text
and the pattern, “don’t cares” – such characters can match any character either in the input or the output.

For our purposes, we are going to interpret such don’t cares as having the value zero, and compute the
quantities

φ j =

m∑
i=1

t j+1−i pi(t j+i−1 − pi)2 =

m∑
i=1

t3
j+i−1 pi − 2

m∑
i=1

t2
j+i−1 p2

i +

m∑
i=1

t j+1−i p3
i .

Clearly, the first term, can be computed convolution of the vector t3
1, t

3
2, . . . , t

3
n with p1, . . . , pm. Similarly, the

second term and third term can also be computed for all j using convolutions. Thus, in O(n log n) time, one can
compute φ j for all j. Clearly, φ j = 0 ⇐⇒ T j matches p, when allowing for don’t cares.

Theorem 2.4.8. Let Σ be some finite alphabet. Given a string t of length n, and a pattern p of length m, both
over Σ ∪ {?}. Then, one can compute, using three convolutions, in O(n log m) time overall, all the locations in t
that matches the string p. Here, a ’?’ matches any character.

2.4.2. Complex numbers – a quick reminder
A complex number is a pair of real numbers x and y, written as τ = x + iy, where x is the real part and y is
the imaginary part. Here i is of course the root of −1. In polar form, we can write τ = r cos ϕ + ir sin ϕ =
r(cos ϕ + i sin ϕ) = reiϕ, where r =

√
x2 + y2 and ϕ = arcsin(y/x). To see the last part, define the following

functions by their Taylor expansion

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · · ,

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · · ,

and ex = 1 +
x
1!
+

x2

2!
+

x3

3!
+ · · · .

Since i2 = −1, we have that

eix = 1 + i
x
1!
−

x2

2!
− i

x3

3!
+

x4

4!
+ i

x5

5!
−

x6

6!
· · · = cos x + i sin x.

The nice thing about polar form, is that given two complex numbers τ = reiϕ and τ′ = r′eiϕ′ , multiplying
them is now straightforward. Indeed, τ · τ′ = reiϕ · r′eiϕ′ = rr′ei(ϕ+ϕ′). Observe that the function eiϕ is 2π
periodic (i.e., eiϕ = ei(ϕ+2π)), and 1 = ei0. As such, an nth root of 1, is a complex number τ = reiϕ such that
τn = rneinϕ = ei0. Clearly, this implies that r = 1, and there must be an integer j, such that

nϕ = 0 + 2π j =⇒ ϕ = j(2π/n).

These are all distinct values for j = 0, . . . , n − 1, which are the n distinct roots of unity.

2.5. Bibliographical notes
The elegant algorithm for string matching with “don’t cares” (or wildcards), presented in Section 2.4.1 , is from
a paper by Clifford and Clifford [CC07].

9

Bibliography
[CC07] Peter Clifford and Raphaël Clifford. Simple deterministic wildcard matching . Information Processing

Letters, 101(2):53–54, 2007.

10

https://www.sciencedirect.com/science/article/pii/S002001900600250X

	Fast Fourier Transform
	Introduction
	Polynomials

	Computing a polynomial quickly on n values
	Generating collapsible sets

	Recovering the polynomial
	The Convolution Theorem
	Application for convolutions: String matching
	Complex numbers – a quick reminder

	Bibliographical notes

	Bibliography

