Suppose we are given a sorted array $A[1..n]$ of n distinct integers, which are not necessarily positive.

(a) Describe a fast algorithm that either computes an index i such that $A[i] = i$ or correctly reports that no such index exists.

(b) Suppose we know in advance that $A[1] > 0$. Describe an even faster algorithm that either computes an index i such that $A[i] = i$ or correctly reports that no such index exists.

Solution (part (a)): We can solve the problem in $O(\log n)$ time using a variant of (or a reduction to) binary search. Here are two pseudocode descriptions of the algorithm, one recursive and one iterative.

```
〈〈Find index $j$ such that $i \leq j \leq k$ and $A[j] = j⟩⟩$

FIND_INDEX($i, k$):
  if $i > k$
    return None
  $j \leftarrow \lceil (i + k) / 2 \rceil$
  if $A[j] = j$
    return $j$
  else if $A[j] > j$
    return FIND_INDEX($i, j - 1$)
  else
    return FIND_INDEX($j + 1, k$)
```

```
FIND_INDEX(A[1..n]):
  $lo \leftarrow 1$; $hi \leftarrow n$
  while $lo \leq hi$
    $mid \leftarrow \lceil (lo + hi) / 2 \rceil$
    if $A[mid] = mid$
      return $mid$
    else if $A[mid] > mid$
      $hi \leftarrow mid - 1$
    else
      $lo \leftarrow mid + 1$
  return None
```

The key observation is that because A is a sorted array of distinct integers, we have $A[j] \geq A[i] + (j - i)$ for all indices $i < j$. In particular, if $A[i] > i$, then $A[j] > j$ for all $j > i$.

Equivalently, suppose we (implicitly) define a new array $B[1..n]$ by setting $B[i] = A[i] - i$ for all i. Then the elements of B are sorted in non-decreasing order (but they are not necessarily distinct), and we are looking for an index i such that $B[i] = 0$.

Rubric: 8 points max. For an explicit algorithm: 1 for binary search idea + 1 for base case + 4 for recursive cases + 2 for time analysis. —1 for each off-by-one error. —1 for returning True/False instead of index. —1 for stating running time as a recurrence without solving it. A reduction to binary search is worth full credit. Max 3 points for a $\Theta(n)$-time algorithm; max 2 points for anything slower; scale partial credit.

Solution (part (b)): If $A[1] = 1$, we can clearly return 1 immediately. On the other hand, if $A[1] > 1$ then $A[i] > i$ for all i, so we can return None immediately. So we can solve this problem in $O(1)$ time!

Rubric: 2 points: 1 for algorithm + 1 for running time
Describe and analyze an algorithm to find a matching with maximum total weight, in a binary tree with weighted edges.

Solution: Let T be the input tree, and let r denote its root node. For any vertex v, we define two functions:

- $MWM(v)$ is the weight of a maximum weight matching in the subtree rooted at v.
- $MWM^*(v)$ is the weight of a maximum weight matching in the subtree rooted at v, where v is not incident to a matching edge.

We need to compute $MWM(r)$. These functions satisfy the following mutual recurrences.

Here $v.l$ and $v.r$ denote the left and right children of v, respectively.

\[
MWM(v) = \begin{cases}
0 & \text{if } v = \text{NULL} \\
0 & \text{if } v \text{ is a leaf} \\
\max \left\{ w(v, v.l) + MWM^*(v.l) + MWM(v.r) \text{ if } v.l \neq \text{NULL} \right\} & \text{otherwise}
\end{cases}
\]

\[
MWM^*(v) = \begin{cases}
0 & \text{if } v \text{ is a leaf} \\
MWM(v.l) + MWM(v.r) & \text{otherwise}
\end{cases}
\]

We can memoize these functions into two new fields at each node of T, and we can evaluate the functions in postorder.

The resulting dynamic programming algorithm runs in $O(n)$ time, where n is the number of vertices in T.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solution.
-1 for assuming every interior node has both left and right children.
Suppose we are given two bit strings \(P[1..m] \) (the “pattern”) and \(T[1..n] \) (the “text”), where \(m \leq n \). Describe and analyze an algorithm to find the minimum Hamming distance between \(P \) and a substring of \(T \) of length \(m \). For full credit, your algorithm should run in \(\mathcal{O}(n \log n) \) time.

Solution (consider 0s and 1s separately): For any integer \(0 \leq s \leq n - m \) (“shift”), let \(HD(s) \) denote the Hamming distance between \(P[1..m] \) and \(T[s+1..s+m] \); we need to compute \(\min_s HD(s) \).

Let us write \(HD(s) = m - \text{Both}1(s) - \text{Both}0(s) \), where

- \(\text{Both}1(s) \) is the number of indices \(i \) such that \(P[i] = T[i+s] = 1 \).
- \(\text{Both}0(s) \) is the number of indices \(i \) such that \(P[i] = T[i+s] = 0 \).

More formally, we have

\[
\text{Both}1(s) = \sum_{i=1}^{m} P[i] \cdot T[s+i] \\
\text{Both}0(s) = \sum_{i=1}^{m} (1 - P[i]) \cdot (1 - T[s+i])
\]

We can evaluate \(\text{Both}1(s) \) for every index \(s \) using convolution as follows. Define two sequences \(p \) and \(t \) by setting \(p_i = P[m-i] \) and \(t_i = T[i] \) for each index \(i \). Then for all \(s \) we have

\[
\text{Both}1(s) = \sum_{i} p_{m-i} \cdot t_{s+i} = (p \ast t)_{m+s}
\]

We can construct the sequences \(p \) and \(t \) in \(\mathcal{O}(n) \) time, and then compute their convolution in \(\mathcal{O}(n \log n) \) time using fast Fourier transforms.

We can similarly express \(\text{Both}0(s) \) as a convolution by defining \(p'_i = 1 - P[m-i] \) and \(t'_i = 1 - T[i] \) for each index \(i \). Then for all \(s \) we have

\[
\text{Both}0(s) = \sum_{i} p'_{m-i} \cdot t'_{s+i} = (p' \ast t')_{m+s}
\]

We can construct the sequences \(p' \) and \(t' \) in \(\mathcal{O}(n) \) time, and then compute their convolution in \(\mathcal{O}(n \log n) \) time using fast Fourier transforms.

After computing both convolutions, we can compute \(\min_s (m - \text{Both}0(s) - \text{Both}1(s)) \) in \(\mathcal{O}(n) \) time. The entire algorithm runs in \(\mathcal{O}(n \log n) \) time.

Solution (powers of \(-1\)): For any integer \(0 \leq s \leq n - m \) (“shift”), let \(HD(s) \) denote the Hamming distance between \(P[1..m] \) and \(T[s+1..s+m] \); we need to compute \(\min_s HD(s) \).

First we modify the arrays to make Hamming distance behave more like a vector dot-product. For any index \(i \), define

\[
P'[i] = \begin{cases}
1 & \text{if } P[i] = 1 \\
-1 & \text{if } P[i] = 0
\end{cases} \quad T'[i] = \begin{cases}
1 & \text{if } T[i] = 1 \\
-1 & \text{if } T[i] = 0
\end{cases}
\]

Then for all \(s \) we have

\[
\text{Both}1(s) = \sum_{i} P'[m-i] \cdot T'[s+i] = (P' \ast T')_{m+s}
\]

We can construct the sequences \(P' \) and \(T' \) in \(\mathcal{O}(n) \) time, and then compute their convolution in \(\mathcal{O}(n \log n) \) time using fast Fourier transforms.

After computing both convolutions, we can compute \(\min_s (m - \text{Both}0(s) - \text{Both}1(s)) \) in \(\mathcal{O}(n) \) time. The entire algorithm runs in \(\mathcal{O}(n \log n) \) time.
Then for any shift \(0 \leq s \leq n - m\), we have
\[
\sum_{i=1}^{m} P'[i] \cdot T'[s + i] = \sum_{i=1}^{m} (1 - 2[P[i] \neq T[s + i]]) = m - 2 \cdot HD(s)
\]

Now define two sequences \(p\) and \(t\) by setting \(p_i = P'[m - i]\) and \(t_i = T'[i]\) for each index \(i\). Then for all \(s\) we have
\[
\sum_{i=1}^{m} P'[i] \cdot T'[s + i] = \sum_{i} p_{m-i} \cdot t_{s+i} = (p \ast t)_{m+s}
\]

and thus \(HD(s) = (m - (p \ast t)_{m+s})/2\).

We can construct the sequences \(p\) and \(t\) in \(O(n)\) time, compute their convolution in \(O(n \log n)\) time using fast Fourier transforms, and finally compute \(\max_s (m - (p \ast t)_{m+s})/2\) in \(O(n)\) time. The entire algorithm runs in \(O(n \log n)\) time.

Solution (squared differences): For any integer \(0 \leq s \leq n - m\) ("shift"), let \(HD(s)\) denote the Hamming distance between \(P[1..m]\) and \(T[s + 1..s + m]\); we need to compute \(\min_s HD(s)\).

We can express the Hamming distance \(HD(s)\) as follows:

\[
HD(s) = \sum_{i=1}^{m} (P[i] - T[i + s])^2
\]

\[
= \sum_{i=1}^{m} P[i]^2 - 2 \cdot \sum_{i=1}^{m} P[i] \cdot T[i + s] + \sum_{i=1}^{s} T[i + s]^2
\]

(We can remove the squaring because \(0^2 = 0\) and \(1^2 = 1\)) We compute each of the terms \(\text{SumP, Both1(s), and SumT(s)}\) for all \(s\) as follows:

- We can compute \(\text{SumP}\) in \(O(m)\) time by brute force, once for all \(s\).
- We can compute the third term \(\text{SumT(s)}\) for all \(s\) in \(O(n)\) time using the recurrence \(\text{SumT(s)} = \text{SumT(s - 1)} - T[s] + T[s + m]\).
- Finally, we compute \(\text{Both1(s)}\) for all \(s\) using convolution. Specifically, we define two sequences \(p\) and \(t\) by setting \(p_i = P[m - i]\) and \(t_i = T[i]\) for each index \(i\). Then for all \(s\) we have

\[
\text{Both1(s)} = \sum_{i=1}^{m} P[i] \cdot T[s + i] = \sum_{i} p_{m-i} \cdot t_{s+i} = (p \ast t)_{m+s}
\]

We can construct the sequences \(p\) and \(t\) in \(O(n)\) time, and then compute their convolution in \(O(n \log n)\) time using fast Fourier transforms.

Finally, we compute \(\max_s (\text{SumP} - 2 \cdot \text{Both1(s)} + \text{SumT(s)})\) in \(O(n)\) time by brute force. The entire algorithm runs in \(O(n \log n)\) time.
Rubric: 10 points. These are not the only correct solutions.

- 1 for using FFT/convolution at all
- 2 for correctly dealing with both 0s and 1s (separately considering 00 and 11 matches, separately considering 01 and 10 matches, mapping (0, 1) to (−1, 1), squared differences, etc.)
- 3 for correctly setting up convolutions (reversing either T or P)
- 3 for correctly reading the minimum Hamming distance from the convolution(s)
- 1 for time analysis (if the algorithm is mostly correct)

A correct algorithm that runs in $O(mn)$ or $O(mn \log n)$ time is worth at most 4 points.
Describe and analyze an algorithm to compute, given a sequence of integers separated by @ (average) signs, the smallest possible value the expression can take by adding parentheses.

Solution: Let $A[1..n]$ be the input array. For any indices $i \leq k$, let $MinAve(i, k)$ denote the smallest possible value that can be obtained from the interval $A[i..k]$ by adding parentheses. We need to compute $MinAve(1, n)$. This function satisfies the following recurrence:

$$MinAve(i, k) = \begin{cases} A[i] & \text{if } i = k \\ \min \{MinAve(i, j) \odot MinAve(j+1, k) \mid i \leq j < k\} & \text{otherwise} \end{cases}$$

The result of the dynamic programming algorithm runs in $O(n^3)$ time.

Rubric: 10 points: standard dynamic programming rubric. This is not the only correct evaluation order. The memoization arrays don’t appear to have the right structure for a monotonicity speedup via SMAWK. As far as I know, this is the fastest algorithm for this problem (up to logarithmic factors).

Non-solution: Consider the following greedy algorithm: Merge the adjacent pair of numbers with the largest average (breaking ties arbitrarily), replace them with their average, and recurse. For example:

```
8 @ 6 @ 7 @ 5 @ 3 @ 0 @ 9
7 @ 7 @ 5 @ 3 @ 0 @ 9
7 @ 5 @ 3 @ 0 @ 9
6 @ 3 @ 0 @ 9
6 @ 3 @ 4.5
4.5 @ 4.5
4.5
```

With the right data structures, this algorithm can be implemented to run in $O(n \log n)$ time; the only real bottleneck is maintaining a priority queue of adjacent pairs.

Unfortunately, this greedy algorithm does **not** always compute the optimal expression. Consider the input $2 @ 5 @ 0 @ 6$. The greedy algorithm outputs $(2 @ 5) @ (0 @ 6) = 3.25$, but the optimal expression is $2 @ (5 @ (0 @ 6)) = 3$. ♣