1. Consider a random walk on a path with vertices numbered 1, 2, \ldots, n from left to right. At each step, we flip a coin to decide which direction to walk, moving one step left or one step right with equal probability. The random walk ends when we fall off one end of the path, either by moving left from vertex 1 or by moving right from vertex n.

(a) Prove that if we start at vertex 1, the probability that the random walk ends by falling off the right end of the path is exactly $1/(n + 1)$.

Solution: Let $L(n)$ be the probability of falling off the Left end of a path of length n, starting at vertex 1. This function satisfies the recurrence

$$L(n) = \frac{1}{2} + \frac{1}{2} \cdot L(n-1) \cdot L(n)$$

The random walk falls off the left end of 1, 2, \ldots, n if and only if (1) the first step is to the left, or (2) the first step is to the right, then we fall off 2, 3, \ldots, n to the left, and finally (recursively) we fall off 1, 2, \ldots, n to the left. The base case of the recurrence is $L(1) = 1/2$ (or, if you prefer, $L(0) = 0$).

The closed-form solution $L(n) = n/(n + 1)$ now follows by induction. Specifically, for any $n > 1$, the inductive hypothesis implies

$$L(n) = \frac{1}{2} + \frac{1}{2} \cdot \frac{n-1}{n} \cdot L(n),$$

from which $L(n) = n/(n + 1)$ follows by straightforward algebra.

Solution: See part (b).

Rubric: 2 points = 1 for recurrence + 1 for solution. “See part (b)” is worth 2/3 of the score for part (b), unless the part (b) solution relies on part (a).
(b) Prove that if we start at vertex k, the probability that the random walk ends by falling off the right end of the path is exactly $k/(n+1)$.

Solution: Let’s suppose the path includes vertices 0 and $n+1$. Let $R(n,k)$ denote the probability that our random walk visits vertex $n+1$ before it visits vertex 0, assuming we start at vertex k. We immediately have $R(n,0) = 0$ and $R(n,n+1) = 1$.

For all $1 \leq k \leq n$, the rules of the random walk imply

$$R(n,k) = \frac{1}{2}R(n,k-1) + \frac{1}{2}R(n,k+1).$$

In other words, the probabilities $R(n,0), R(n,1), R(n,2), \ldots, R(n,n), R(n,n+1)$ define an arithmetic sequence; the intermediate values are evenly spaced between $R(n,0) = 0$ and $R(n,n+1) = 1$. It follows that $R(n,k) = \frac{k}{n+1}$ for all k. □

Solution: Let’s add vertices 0 and $n+1$ to the ends of our path. Let $R(n,k)$ denote the probability that our random walk visits vertex $n+1$ before it visits vertex 0, assuming we start at vertex k. I claim that $R(n,k) = \frac{k}{n+1}$ for all integers n and k such that $n > 0$ and $0 \leq k \leq n+1$.

Fix an arbitrary integers n and k such that $n > 0$ and $0 \leq k \leq n+1$. As an inductive hypothesis, assume $R(j,m) = \frac{j}{m+1}$ for all positive integers m and j such that $0 < m < n$ and $0 \leq j \leq m+1$.

We immediately have $R(n,0) = 0$ and $R(n,n+1) = 1$, so suppose $1 \leq k \leq n$. Any random walk from vertex k to vertex $n+1$ must consist of a random walk from vertex k to vertex n, followed by an independent random walk from vertex n to vertex $n+1$. Thus,

$$R(n,k) = R(n-1,k) \cdot R(n,n)$$

$$= R(n-1,k) \cdot \frac{n}{n+1} \quad \text{[from part (a)]}$$

$$= \frac{k}{n} \cdot \frac{n}{n+1} \quad \text{[induction hypothesis]}$$

$$= \frac{k}{n+1}$$

In all cases, we conclude that $R(n,k) = \frac{k}{n+1}$, as required. □

Rubric: 3 points. A proof that relies on part (a) is worth full credit, but only if a standalone solution is given for part (a).
(c) Prove that if we start at vertex 1, the expected number of steps before the random walk ends is exactly n.

Solution: Let $S(n)$ be the expected number of steps before the random walk ends, assuming we start at vertex 1. We immediately observe that $S(0) = 0$ and $S(1) = 1$.

So assume $n \geq 2$. In the first step, either the random walk ends immediately, or it enters the interior path from 2 to $n - 1$. In the latter case, the random walk eventually leaves this shorter path, after which we are once again at the end of a path of length n. Linearity of expectation now implies

$$S(n) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (1 + S(n - 2) + S(n))$$

or equivalently, $S(n) = S(n-2)+2$. The closed form $S(n) = n$ follows immediately by induction.

Solution: See part (d).

Rubric: 2 points. “See part (d)” is with $2/3$ of the score for part (d), unless the submitted solution to part (d) relies on part (c).
(d) What is the exact expected length of the random walk if we start at vertex \(k \), as a function of \(n \) and \(k \)? Prove your result is correct. (For partial credit, give a tight \(\Theta \)-bound for the case \(k = \frac{n+1}{2} \), assuming \(n \) is odd.)

Solution: For all integers \(n \) and \(k \) such that \(0 \leq k \leq n+1 \), let \(S(n, k) \) denote the expected number of steps for the random walk to reach either vertex 0 or vertex \(n+1 \), assuming we start at vertex \(k \). For all \(n \), we immediately have \(S(n, 0) = S(n, n+1) = 0 \). (Alternatively, if you prefer, part (c) implies \(S(n, 1) = S(n, n) = n \).) If \(1 \leq k \leq n \), linearity of expectation implies

\[
S(n, k) = 1 + \frac{1}{2}S(n, k-1) + \frac{1}{2}S(n, k+1),
\]

or equivalently,

\[
S(n, k+1) - S(n, k) = S(n, k) - S(n, k-1) - 2.
\]

It follows by induction that

\[
S(n, k+1) - S(n, k) = S(n, 1) - S(n, 0) - 2k = n - 2k,
\]

and therefore, again by induction, that

\[
S(n, k) = \sum_{j=0}^{k-1} (n-2j) = kn - 2 \sum_{j=0}^{k-1} j = kn - k(k-1).
\]

We conclude that \(S(n, k) = k(n-k+1) \).

Solution: For all integers \(n \) and \(k \) such that \(0 \leq k \leq n+1 \), let \(S(n, k) \) denote the expected number of steps for the random walk to reach either vertex 0 or vertex \(n+1 \), assuming we start at vertex \(k \).

Let’s break the random walk starting at \(k \) into two phases. The first phase ends when the walk reaches either vertex 1 or vertex \(n \) for the first time; the second phase is the rest of the walk.

The expected number of steps to reach either 1 or \(n \) from \(k \) is equal to the expected number of steps to reach either 0 or \(n-1 \) from \(k-1 \). Thus, the expected length of the first phase is exactly \(S(n-2, k-1) \). The expected length of the second phase is either \(S(n, 1) \) or \(S(n, n) \), and part (c) implies \(S(n, 1) = S(n, n) = n \). So we have a simple recurrence:

\[
S(n, k) = S(n-2, k-1) + n
\]

To solve the recurrence, there are two cases to consider. If \(k \leq n/2 \), then inductively expanding the recurrence \(k \) times gives us

\[
S(n, k) = S(n-2k, 0) + \sum_{j=0}^{k-1} (n-2j)
\]
\[
= nk - 2 \sum_{j=0}^{k-1} k = nk - k(k - 1) = k(n - k + 1)
\]

On the other hand, if \(k > \frac{n}{2} \), symmetry implies \(S(n, k) = S(n, n - k + 1) = (n - k + 1)k \). In both cases, we conclude that \(S(n, k) = k(n - k + 1) \). ■

\textbf{Rubric:} 3 points = 1 for exact solution + 2 for proof. A proof that refers to part (c) is worth full credit only if a standalone proof is given for part (c). A \(\Theta(n^2) \) bound for the special case \(k = (n + 1)/2 \) is worth 2 points.
2. **Tabulated hashing** uses tables of random numbers to compute hash values. Suppose $|U| = 2^w \times 2^w$ and $m = 2^\ell$, so the items being hashed are pairs of w-bit strings (or $2w$-bit strings broken in half) and hash values are ℓ-bit strings.

Let $A[0..2^w - 1]$ and $B[0..2^{w - 1}]$ be arrays of independent random ℓ-bit strings, and define the hash function $h_{A,B} : U \rightarrow [m]$ by setting

$$h_{A,B}(x, y) := A[x] \oplus B[y]$$

where \oplus denotes bit-wise exclusive-or. Let \mathcal{H} denote the set of all possible functions $h_{A,B}$. Filling the arrays A and B with independent random bits is equivalent to choosing a hash function $h_{A,B} \in \mathcal{H}$ uniformly at random.

(a) Prove that \mathcal{H} is 2-uniform.

Solution: Let (x, y) and (x', y') be arbitrary distinct elements of U, and let i and j be arbitrary (possibly equal) hash values. To simplify notation, we define

$$a = A[x], \quad b = B[y], \quad a' = A[x'], \quad \text{and} \quad b' = B[y'].$$

Say that a, b, a', b' are **good** if $a \oplus b = i$ and $a' \oplus b' = j$. We need to prove that

$$\Pr[a, b, a', b' \text{ are good}] = \frac{1}{m^2}.$$

There are three cases to consider.

- Suppose $x \neq x'$ and $y \neq y'$. Then a, b, a', b' are four different and therefore independent random w-bit strings. There are m^4 possible values for a, b, a', b'. If we fix a and a' arbitrarily, there is exactly one good value of b and exactly one good value of b', namely, $b = a \oplus i$ and $b' = a' \oplus j$. Thus, there are m^2 good values for a, b, a', b'. We conclude that the probability that a, b, a', b' are good is $m^2/m^4 = 1/m^2$.

- Suppose $x = x'$ and $y \neq y'$. Then $a = a'$, so there are only m^3 possible values for a, b, a', b'. If we fix $a = a'$ arbitrarily, there is exactly one good value of b and exactly one good value of b', namely, $b = a \oplus i$ and $b' = a' \oplus j$. Thus, there are m good values of a, b, a', b'. We conclude that the probability that a, b, a', b' are good is $m/m^3 = 1/m^2$.

- The final case $x \neq x'$ and $y = y'$ is symmetric with the previous case.

Rubric: 3 points = 1 for basic setup + 1 or each case. This is more detail than necessary for full credit. This is not the only correct solution. “See part (b)” is worth 3/4 of your score for part (b).
(b) Prove that \mathcal{H} is 3-uniform. [Hint: Solve part (a) first.]

Solution: Let $(x, y), (x', y'), (x'', y'')$ be arbitrary distinct elements of \mathcal{H}, and let i, j, k be arbitrary (possibly equal) hash values. To simplify notation, we define

$$a = A[x], \quad b = B[y], \quad a' = A[x'], \quad b' = B[y'], \quad a'' = A[x''], \quad b'' = B[y''].$$

Say that a, b, a', b', a'', b'' are **good** if $a \oplus b = i$ and $a' \oplus b' = j$ and $a'' \oplus b'' = k$. There are three cases to consider.

- Suppose x, x', x'' are all different. Arbitrarily fix y, y', y''. There are m^3 possible values for x, x', x'', but only one good value: $x = y \oplus i$ and $x' = y' \oplus j$ and $x'' = y'' \oplus k$.
- If $x = x' = x''$, then y, y', y'' must be all different, and we can argue exactly as in the previous case.
- The only remaining case (up to symmetry) is $x = x' \neq x''$ and $y \neq y' = y''$. Then there are m^3 possible values for a, b, b', b''. If we fix a arbitrarily, the only good values of the remaining variables are $b = a \oplus i$ and $b' = a \oplus j$ and $a'' = b' \oplus k = a \oplus j \oplus k$. Thus, there are exactly m good values for a, b, b', a''.

In all cases, we conclude that $Pr[a, b, a', b', a'', b'' \text{ are good}] = 1/m^3$. ■

Rubric: 4 points = 1 for basic setup + 1 for each case. This is not the only correct solution.

(c) Prove that \mathcal{H} is **not** 4-uniform.

Solution: For any function $h \in \mathcal{H}$ and any w-bit strings x, y, x', y', we have

$$h(x, y) \oplus h(x', y') = h(x, y') \oplus h(x', y')$$

$$= A[x] \oplus B[y] \oplus A[x'] \oplus B[y'] \oplus A[x] \oplus B[y] \oplus A[x'] \oplus B[y']$$

$$= A[x] \oplus A[x'] \oplus A[x'] \oplus B[y] \oplus B[y] \oplus B[y']$$

$$= 0.$$

It follows that for any hash values i, j, k, l, the probability

$$Pr[h(x, y) = i \land h(x, y') = j \land h(x', y) = k \land h(x', y') = l]$$

is an integer multiple of $1/m^3$, and therefore cannot equal $1/m^4$. ■

Rubric: 3 points. This is more detail than necessary for full credit. This is not the only correct solution.
3. Suppose we are given a coin that may or may not be biased, and we would like to compute an accurate estimate of the probability of heads. Specifically, if the actual unknown probability of heads is p, we would like to compute an estimate \hat{p} such that
\[
\Pr[|\hat{p} - p| > \varepsilon] < \delta
\]
where ε is a given accuracy or error parameter, and δ is a given confidence parameter.

The following algorithm is a natural first attempt; here Flip() returns the result of an independent flip of the unknown coin.

\[
\text{MeanEstimate}(\varepsilon): \\
\text{count} \leftarrow 0 \\
\text{for } i \leftarrow 1 \text{ to } N \\
\quad \text{if Flip()} = \text{Heads} \\
\quad \quad \text{count} \leftarrow \text{count} + 1 \\
\text{return } \text{count} / N
\]

(a) Let \hat{p} denote the estimate returned by $\text{MeanEstimate}(\varepsilon)$. Prove that $E[\hat{p}] = p$.

Solution: Let $X_i = 1$ if the ith flip is HEADS and $X_i = 0$ if the ith flip is TAILS. The final value of count is $X = \sum_i X_i$, so linearity of expectation implies
\[
E[X] = \sum_{i=1}^{N} \Pr[X_i = 1] = Np.
\]
Finally, $\hat{p} = X / N$, so linearity of expectation implies $E[\hat{p}] = E[X] / N = p$, as required.

Rubric: 3 points.

(b) Prove that if we set $N = \lceil \alpha / \varepsilon^2 \rceil$ for some appropriate constant α, then $\Pr[|\hat{p} - p| > \varepsilon] < 1/4$. [Hint: Use Chebyshev’s inequality.]

Solution: The coin flips are pairwise independent (in fact, fully independent) so we can apply Chebyshev’s inequality. Let X be the final value of count, and recall from part (a) that $\mu = E[X] = Np$.

\[
\Pr[|\hat{p} - p| > \varepsilon] = \Pr[|X - \mu| > N\varepsilon] \\
= \Pr[(X - \mu)^2 > N^2\varepsilon^2] \\
< \frac{\mu}{N^2\varepsilon^2} = \frac{p}{N\varepsilon^2} \quad \text{[Chebyshev’s inequality]}
\]
Setting $N = \lceil 4 / \varepsilon^2 \rceil$ implies $\Pr[|\hat{p} - p| > \varepsilon] < p / 4 \leq 1/4$.

Rubric: 3 points. We can’t apply the form of Chebyshev’s inequality given in the notes to \hat{p} directly, because \hat{p} is not a sum of indicators.
(c) We can increase the previous estimator’s confidence by running it multiple times, independently, and returning the median of the resulting estimates.

\[
\text{MedianOfMeansEstimate}(\delta, \epsilon): \quad \text{for } j \leftarrow 1 \text{ to } K \quad \text{estimate}[j] \leftarrow \text{MeanEstimate}(\epsilon) \quad \text{return Median(estimate[1..K])}
\]

Let \(p^* \) denote the estimate returned by \(\text{MedianOfMeansEstimate}(\delta, \epsilon) \). Prove that if we set \(N = \lceil \alpha/\epsilon^2 \rceil \) (inside MeanEstimate) and \(K = \lceil \beta \ln(1/\delta) \rceil \), for some appropriate constants \(\alpha \) and \(\beta \), then \(\Pr[|p^* - p| > \epsilon] < \delta \). [Hint: Use Chernoff bounds.]

Solution: For each index \(j \), define an indicator variable

\[
Y_j := [\text{estimate}[j] - p > \epsilon].
\]

Let \(Y = \sum_j Y_j \) denote the number of bad mean estimates. Our analysis in part (b) implies that if we set \(N = \lceil 4/\epsilon^2 \rceil \) inside MeanEstimate, then \(\Pr[Y_j = 1] < 1/4 \) for all \(j \) and therefore \(\mathbb{E}[Y] < K/4 \).

The median estimate \(p^* \) is larger than \(p + \epsilon \) if and only if at least half of the mean estimates are larger than \(p + \epsilon \). Similarly, \(p^* < p - \epsilon \) if and only if at least half of the mean estimates are larger than \(p + \epsilon \). Thus,

\[
\Pr[|p^* - p| > \epsilon] \leq \Pr[Y \geq K/2]
\]

The indicator variables \(Y_j \) are mutually independent (because the coin flips inside MeanEstimate are mutually independent). However, we cannot apply Chernoff bounds directly to \(Y \), because we would eventually need a lower bound on \(\mathbb{E}[Y] \).

Let \(Z_1, Z_2, \ldots, Z_d \) be mutually independent indicator variables such that \(\Pr[Z_i = 1] = 1/4 \) for all \(i \), and let \(Z = \sum_{i=1}^d Z_i \). We immediately have

\[
\Pr[Y \geq K/2] \leq \Pr[Z \geq K/2];
\]

intuitively, in any sequence of \(K \) independent coin flips, if we increase the probability that each coin comes up heads, we also increase the probability of getting at least \(K/2 \) heads.

Finally, we apply the Chernoff bound \(\Pr[X \geq (1 + \Delta)\mu] < \exp(-\Delta^2\mu/3) \) with \(\mu = \mathbb{E}[Z] = K/4 \) and \(\Delta = 1/4 \).

\[
\Pr[Z \geq K/2] = \Pr[Z \geq 2\mu] \leq \exp(-\mu/3) = \exp(-K/12).
\]

We conclude that if we set \(K = \lceil 12\ln(1/\delta) \rceil \), then \(\Pr[|p^* - p| > \epsilon] < \delta \), as required.

[Sorry, \(\delta \) was already taken.]

Rubric: 4 points. -1 for implicitly assuming that \(\mathbb{E}[Y] = K/4 \). A perfect solution must explicitly invoke the fact that the mean estimates are mutually independent. This is more detail than necessary for full credit.