Randomized Algorithms

Library function $\text{RANDOM}(k)$

$\{1, 2, 3, \ldots, k\}$ uniformly at random

Adversary
- Quicksort $\Rightarrow O(n^2)$
- Pivot randomly $\Rightarrow O(n \log n)$

Expected time

$O(n \log n)$ time with high prob.

$T(x)$ = running time on input x

$\max_{|x|=n} T(x) = T(n) = \text{worst-case running time}$

$\max_{|x|=n} E[T(x)] = \text{worst-case expected time}$

Randomness in the algorithm.

Introduction to discrete prob.

Sample space Ω = finite/countable set

Probability mass function: $Pr: \Omega \rightarrow \mathbb{R}$

$Pr[w] \geq 0 \quad \sum_{w \in \Omega} Pr[w] = 1$

Event = subset of $\Omega = \text{condition/proposition}$

$Pr[A] = \sum_{w \in A} Pr[w] \leftarrow \text{Prob of event}$

$A \lor B \quad A \land B \quad \neg A \quad A \Rightarrow B \quad \ldots$

Blue die + red die

$Pr[\text{at most one } S] = Pr[\neg \text{two } S's] = 1 - Pr[\text{two } S's]$

$= \frac{35}{36}$

Conditional probability: $Pr[A \mid B] = \frac{Pr[A \land B]}{Pr[B]}$

$Pr[\text{red die} \mid \text{at least one } S] = \frac{6}{11}$

$Pr[\text{at least one } S] = \frac{2}{3}$

Conditional probability: $Pr[A \mid B] = \frac{Pr[A \land B]}{Pr[B]}$

$Pr[\text{at least one } S] = \frac{2}{3}$

A and B are disjoint $\iff Pr[A \lor B] = 0$

A and B are independent $\iff Pr[A \land B] = Pr[A] \cdots Pr[B]$
Random variable \(X: \Omega \rightarrow \mathbb{V} \)
\(X: \Omega \rightarrow \mathbb{Z} \) "random integer" "int. random variable"
\(\Pr[X = x] \) \(\Pr[X \geq x] \) \(\Pr[X = Y] \)
Expectation: \(E[X] = \sum x \cdot \Pr[X = x] \)
\(\{1, 2, 3, 4, 5, 6\} \) \(E[6] = 3\frac{1}{2} \)
Conditional Exp. \(E(X|A) = \sum x \cdot \Pr[X = x|A] \)

Random variable \(X: \Omega \rightarrow \mathbb{V} \)
\(X: \Omega \rightarrow \mathbb{Z} \) "random integer" "int. random variable"
\(\Pr[X = x] \) \(\Pr[X \geq x] \) \(\Pr[X = Y] \)
Expectation: \(E[X] = \sum x \cdot \Pr[X = x] \)
\(\{1, 2, 3, 4, 5, 6\} \) \(E[6] = 3\frac{1}{2} \)
Conditional Exp. \(E(X|A) = \sum x \cdot \Pr[X = x|A] \)

John von Neumann 1945

Biased coin \(\Pr(\text{Heads}) = p \) \(\Pr(\text{Tails}) = 1-p = q \)

How many flips until first head? \(E(\#\text{flips}) = \frac{1}{p} \)
\(E[\#\text{flips}] = E[\#\text{flips}|\text{first} = H] \cdot \Pr(\text{first} = H) + E[\#\text{flips}|\text{first} = T] \cdot \Pr(\text{first} = T) \)
\(= 1 \cdot p + (1+E[\#\text{flips}])q \)
\(X = 1-p + (1+x)(1-p) \Rightarrow x = \frac{1}{p} \)

Simulate fair coin - Flip twice
\(\begin{array}{c|cc}
\text{H} & \text{H} & \text{T} \\
\text{P} & \text{T} & \text{H} \\
\text{1-P} & \text{T} & \text{H} \\
\end{array} \)

\(HH \rightarrow \text{restart} \)
\(TT \rightarrow \)
\(HT \rightarrow \) "heads"
\(TH \rightarrow \) "tails"
\[E[\text{#flips}] = 2 \cdot E[\text{#trials}] = 2 \cdot \frac{1}{2p(1-p)} = \frac{1}{pq} \]

succeeds with prob \(2p(1-p) \)
fail with prob \(1 - 2p(1-p) \)

Pokémon

\(N \) types of cards

You can buy random Poké card for $1

\(E[\text{cost}] \) to have at least one of each type?

Linearity of expectation

\[E[X + Y] = E[X] + E[Y] \]

\(X = \) # trials to get all \(N \) Pokémon

\(X = Y_1 + Y_2 + \ldots + Y_N \)

\(Y_i = \) # trials after we have \(i-1 \) Pokémon to get \(i \) Pokémon

\(Y_1 = 1 \quad E[Y_N] = N \)

\[E[Y_i] = \frac{N}{N-i+1} \]

\[E[X] = \sum_{i=1}^{N} E[Y_i] = \sum_{i=1}^{N} \frac{N}{N-i+1} = \sum_{j=1}^{N} \frac{N}{j} = N \sum_{j=1}^{N} \frac{1}{j} \]

\(\approx N \ln N \)