Dynamic Programming
Text segmentation:

Splittable(i) $=$ Is A[i..n] sppittable into words?
$O\left(n^{2}\right)$ time
Longest Increasing Subsequence
3(1) 1159 (2) $65(3) 589$ (7) 432384627
Is this the next element of the LIS, given that previous element
was here

What do we need for DP full credit?
(1) English specification
(2) Recurrence
(3) Iterative detaits
(4) Pseudo code + time

LIS $L i, j)=$ length of longest incr subseq of Alj..n] all bigger than Ac:]

Longest Increasing Subsequence. Take Z

$$
-\infty 314 \text { (1) } 596 \text { (2) (3) } 889323(8) 4627
$$

What is the first element of LIS? next
What is second element in LIS

$$
A(D) \leftarrow-\infty
$$ return LIS $(0)-1$ whose first element is here?

$L I S^{\prime}(i)=$ length of longest increasing subseq of $A[i, \ldots]$ starting with $A[i]$

$$
\begin{gathered}
\operatorname{LS^{\prime }}(i)=1+\max \left\{L I S^{\prime}(j) \mid i<j \leqslant n \text { and } A\left[_{j}\right]>A(i]\right\} \\
{[n a x \not \subset=0]}
\end{gathered}
$$

Long plank with cut marks Sawmill will make one cut, cost = length of plank What is the cheapest way to make all cuts?
Given array $\underset{L}{B}[1 \ldots n]$ of board lengths
$X[1, n]$ of cnt positions

$$
\begin{aligned}
& x[j]=\sum_{i \leq j} B[i] \\
& B[i]=x[i]-x[i-1] \\
& \text { Length }(i, j)=X[-j]-x[i-1]
\end{aligned}
$$

WoodCut (i.j) $=$ min. cost to cut plank containing boards i..j into individual boards?

