Logistics: Masks are recommended.
- HWD due tonight 9pm
- Gradescope self-enrollment code: WVVEEG

"Describe an algorithm" includes justification
but NOT CODE

"Analyze an algorithm" includes justification

Given a string, can we split it into a sequence of "words"

\[
\text{IsWord}(str) \rightarrow \text{bool}
\]

PRIMUS
DIGNITAS
INTAMTEN
VIVISCIENTIA
NONPOTEST
ESSERERES
ENIMSVN
PARVAE
PROPEINSINGVLIS
LITTERIS
ATQVE
INTERPVNCTIONIBUSVERBORVMOC
CCVPATAE

sequence of letters \rightarrow sequence of words

- nothing
- word, seq of words

My job

What is the first word?

try all prefixes:

Is Word = True?
Is rest splittable into words?

Splittable(A[1..n]):

if $n = 0$
 return True
for $i \leftarrow 1$ to n
 if IsWord(A[1..i])
 if Splittable(A[i+1..n])
 return True
return False
Treat input string A as a global variable

$$\text{Splittable}(i) = \text{True iff } A[i..n] \text{ is splittable into words}$$

$$\text{Splittable}(i) = \begin{cases}
\text{True} & \text{if } i > n \\
\bigvee_{j=i}^{n} (\text{IsWord}(i, j) \land \text{Splittable}(j + 1)) & \text{otherwise}
\end{cases}$$

\[\langle \text{Is the suffix } A[i..n] \text{ Splittable?} \rangle\]

SPLITTABLE(i):

if $i > n$

return True

for $j \leftarrow i$ to n

if $\text{IsWord}(i, j)$

if SPLITTABLE$(j + 1)$

return True

return False

\[T(n) = \text{time for SPLITTABLE}(n) = O(2^n)\]

\[T(n) = \sum_{i=1}^{n} (O(1) + T(n-i))\]

Nowhere QFVY...-

A lot of redundant computation

MEMORIZATION

Store answers in an array $\text{SplitTable}[1..n]$

Time $\rightarrow O(n^2)$ calls to IsWord

The array fills from right to left
Do that on purpose!

DPSplitTable(A(1..n)):

1. SplitTable[n+1] ← TRUE
2. **FOR** i ← 1 **down to** 1
 - SplitTable[i, j] ← FALSE
3. **FOR** j ← i to n
 - if a word(A[i, j])
 - if SplitTable[j+1]
 - SplitTable[i, j] ← TRUE
4. return SplitTable[1]

Longest Increasing Subsequence

What is the first element of LIS?
Is A[1] in the LIS?

Increasing sequence bigger than x
　is either ∅
　or (int y > x) followed by (incseq > y)

Global variable input A[1..n]

\[\text{LIS}(i, j) = \begin{cases} 0 & \text{if } j > n \\ \text{LIS}(i, j+1) & \text{if } A[i] \geq A[j] \\ \max \{ \text{LIS}(i, j+1), 1 + \text{LIS}(j, j+1) \} & \end{cases} \]
FASTLIS(A[1..n]):
A[0] ← −∞ \hspace{1em} ⟨\text{Add a sentinel}\rangle
for i ← 0 to n \hspace{1em} ⟨\text{Base cases}\rangle
 \hspace{1em} LISbigger[i, n + 1] ← 0
for j ← n down to 1
 \hspace{1em} for i ← 0 to j − 1 \hspace{1em} ⟨\text{...or whatever}\rangle
 \hspace{1em} keep ← 1 + LISbigger[j, j + 1]
 \hspace{1em} skip ← LISbigger[i, j + 1]
 \hspace{1em} if \ A[i] ≥ A[j]
 \hspace{1em} LISbigger[i, j] ← skip
 \hspace{1em} else
 \hspace{1em} LISbigger[i, j] ← \max\{keep, skip\}
return LISbigger[0, 1]