Unless a problem specifically states otherwise, you may assume a function `RANDOM` that takes a positive integer \(k \) as input and returns an integer chosen uniformly and independently at random from \(\{1, 2, \ldots, k\} \) in \(O(1) \) time. For example, to flip a fair coin, you could call `RANDOM(2)`.

Homework 4

Due Tuesday, October 4, 2022 at 9pm

Part 0. [Warmup only. Do not submit solutions!]

After sending his loyal friends Rosencrantz and Guildenstern off to Norway, Hamlet decides to amuse himself by repeatedly flipping a fair coin until the sequence of flips satisfies some condition. For each of the following conditions, compute the exact expected number of flips until that condition is met.

(a) Hamlet flips heads.
(b) Hamlet flips both heads and tails (in different flips, of course).
(c) Hamlet flips heads twice.
(d) Hamlet flips heads twice in a row.
(e) Hamlet flips heads followed immediately by tails.
(f) Hamlet flips more heads than tails.
(g) Hamlet flips the same number of heads and tails.
(h) Hamlet flips the same positive number of heads and tails.
(i) Hamlet flips more than twice as many heads as tails.

Hint: Be careful! If you’re relying on intuition instead of a proof, you’re probably wrong.

Part 1. Consider the following non-standard algorithm for randomly shuffling a deck of \(n \) cards, initially numbered in order from 1 on the top to \(n \) on the bottom. At each step, we remove the top card from the deck and *insert* it randomly back into the deck, choosing one of the \(n \) possible positions uniformly at random. The algorithm ends immediately after we pick up card \(n-1 \) and insert it randomly into the deck.

(a) Prove that this algorithm uniformly shuffles the deck, meaning each permutation of the deck has equal probability. *Hint: Prove that at all times, the cards below card \(n-1 \) are uniformly shuffled.*

(b) What is the exact expected number of steps executed by the algorithm? *Hint: Split the algorithm into phases that end when card \(n-1 \) changes position.*
2. Suppose we are given a two-dimensional array $M[1..n, 1..n]$ in which every row and every column is sorted in increasing order and no two elements are equal.

(a) Describe and analyze an algorithm to solve the following problem in $O(n)$ time: Given indices i, j, i', j' as input, compute the number of elements of M larger than $M[i, j]$ and smaller than $M[i', j']$.

(b) Describe and analyze an algorithm to solve the following problem in $O(n)$ time: Given indices i, j, i', j' as input, return an element of M chosen uniformly at random from the elements larger than $M[i, j]$ and smaller than $M[i', j']$. Assume the requested range is always non-empty.

(c) Describe and analyze a randomized algorithm to compute the median element of M in $O(n \log n)$ expected time.

(The algorithm for part (c) can be used as a subroutine to solve HW2.2 in $O(n \log^2 n)$ expected time!)

3. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows that you are an algorithms student, so instead of the traditional game of chess, Death presents you with a complete binary tree with 4^n leaves, each colored either black or white. There is a token at the root of the tree. To play the game, you and Death will take turns moving the token from its current node to one of its children. The game will end after $2n$ moves, when the token lands on a leaf. If the final leaf is black, you die; if it’s white, you will live forever. You move first, so Death gets the last turn.

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even levels (where it’s your turn) are OR gates, the nodes at odd levels (where it’s Death’s turn) are AND gates. Each gate gets its input from its children and passes its output to its parent. White and black stand for TRUE and FALSE. If the output at the top of the tree is TRUE, then you can win and live forever! If the output at the top of the tree is FALSE, you should challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win. [Hint: This is easy!]

(b) Unfortunately, Death won’t give you enough time to look at every node in the tree. Describe a randomized algorithm that determines whether you can win in $O(3^n)$ expected time. [Hint: Consider the case $n = 1$.]
(c) [Extra credit] Describe and analyze a randomized algorithm that determines whether you can win in $O(c^n)$ expected time, for some constant $c < 3$. [Hint: You may not need to change your algorithm from part (b) at all!]