10 (100 pts.) There is a war between the underworld and the heavens.

[The following question is long, but should be relatively easy (and quick) to do, as the subparts are pretty short/straightforward.]

Let A and B be two sets of n lines in the plane in general position (i.e., no line in $A \cup B$ is vertical, no pair of lines are parallel, and no three lines meet in a common point). Our purpose here is to compute efficiently a point p that lies above all the lines of A and below all the lines of B — such a point is feasible. Formally, a point p lies above a line ℓ, of p is on ℓ, or lies vertically above it. Similarly, p is below ℓ, if p is on ℓ, or lies vertically below it.

A vertex is the intersection point of two lines.

10.A. (10 pts.) Consider the following functions

\[L(t) = \min_{\ell \in B} \ell(t) \quad \text{and} \quad U(t) = \max_{\ell \in A} \ell(t), \]

where $\ell(x)$ denote the y coordinate of the point on ℓ with $x = t$. The function $L(t)$ is the lower envelope of B, and it is concave. The function $U(t)$ is the upper envelope of A, and it is a convex function. See Figure ??.

\[L \]
\[U \]
\[L \]
\[(A) \]
\[(B) \]
\[(C) \]

(a)
(b)
(c)

Figure 1: (A) The set B of lines, and its lower envelope L. (B) The set A of lines, and its upper envelope U. (C) The feasible region is sandwiched between L and U.

Consider the function $f(t) = L(t) - U(t)$. Argue that the function f is concave. Show how to compute the value of $f(t)$, for a specified value of t, in $O(n)$ time. Show how to compute the left and right derivatives of f at t (denoted by $f'_-(t)$ and $f'_+(t)$) in $O(n)$ time.

10.B. (10 pts.) Using the above, describe an algorithm that for a given t, outputs a feasible point in $O(n)$ time, if there exits such a point with x coordinate equal to t (hint: compute the value $f(t)$).

10.C. (10 pts.) You are given value of t, such that $f(t) < 0$. Argue that if one of the following holds, then there is no feasible point:
(i) \(f'_-(t) = 0 \) or \(f'_+(t) = 0 \).
(ii) \(f'_-(t) > 0 \) and \(f'_+(t) < 0 \).

10.D. (10 Pts.) You are given a value of \(t \), such that \(f(t) < 0 \). Argue that the following two things hold:
(i) If \(f'_-(t) < 0 \), and \(f'_+(t) < 0 \), then if there is a feasible point \((x, y)\), it must be that \(x < t \).
(ii) If \(f'_-(t) > 0 \), and \(f'_+(t) > 0 \), then if there is a feasible point \((x, y)\), it must be that \(x > t \).

10.E. (10 Pts.) You are given a value \(t \), and two lines \(\ell_1, \ell_2 \in A \) that intersects at a point \((x', y')\), such that \(x' < t \), and all the feasible points of \(A \cup B \) have \(x \) coordinate strictly larger than \(t \). Show how to compute in \(O(1) \) time a line \(\ell_i \) (\(i = 1 \) or \(i = 2 \)), such that a point \(p \) is feasible for \(A \cup B \) if and only if it is feasible for \(A \cup B \setminus \{\ell_i\} \). (A similar algorithm holds if \(x' > t \), and all the feasible points must have \(x \) coordinates smaller than \(t \). Or if the two lines belong to \(B \).)

10.F. (50 Pts.) Imitating the algorithm seen in class, describe a linear time algorithm, using the above (in detail), describe a linear time algorithm that decides if \(A \cup B \) has a feasible point, and if so outputs it.

11 (100 Pts.) Maximum submatrix.
The input is a matrix \(M[1 \ldots n][1 \ldots n] \) of real numbers (potentially positive and negative). The \textit{value} of a submatrix \(M[b \ldots c][d \ldots e] \) is
\[
v(M[b \ldots c][d \ldots e]) = \sum_{i=b}^{c} \sum_{j=d}^{e} M[i][j].
\]
Describe an algorithm, as fast as possible, that computes the maximum value submatrix of \(M \).

12 (100 Pts.) Find the sink.
You are given an implicit DAG \(G \) defined over the set of vertices \(V = [n]^2 \), where \([n] = \{1, \ldots, n\} \).
There are weights of the vertices, and you can retrieve the weight of any vertex \(v \), by calling a given function \(f(v) \). Such a call takes constant time. You can assume all the weights on the vertices are distinct.

There is an edge \((v, v')\) between two vertices \(v = (i, j) \) and \(v' = (i', j') \) in this DAG, if and only if \(|i - i'| + |j - j'| = 1 \) and \(f(v) < f(v') \). (Namely, any two adjacent vertices in the grid \([n]^2\) are connected by an edge, with the direction of the edge is determined by the value of \(f \).)

Note, that the input here is just the function \(f \), and the number \(n \). Describe a \textit{recursive} algorithm, as fast as possible, that computes a sink in this DAG. What is the running time of your algorithm? How many calls to \(f \) does it perform?