
HW 1 Due on Wednesday, September 1, 2021 at 10am

CS 473: Algorithms, Fall 2021 Version: 1

This homework contains three problems. Read the instructions for submitting homework on
the course webpage.

Collaboration Policy: For all homeworks, you can submit in groups of size up to 3. You are strongly
encouraged to submit/work in groups – you will do worse in the course if you work on your own.
Really.

Read the course policies before starting the homework.

• Homework 0 test your familiarity with prerequisite material: big-Oh notation, elementary algo-
rithms and data structures, recurrences, graphs, and induction, to help you identify gaps in your
background knowledge. You are responsible for filling those gaps. The course web page has point-
ers to several excellent online resources for prerequisite material. If you need help, please ask in
headbanging, on Piazza, in office hours, or by email.
• Please carefully read the course policies on the course web site. If you have any questions, please

ask in lecture, in headbanging, on Piazza, in office hours, or by email. In particular:

• Submission: Please submit the solution to each question in a separated PDF file uploaded
to gradescope. Have your name and NetIDs clearly printed on first page.

• You may use any source at your disposal: paper, internet, electronic, human, or other,
but you must write your solutions in your own words, and you must cite explicitly1 every
source that you use (except for official course materials [and even if you use course material,
you might want to give a ref]). Please see the academic integrity policy for more details.

• No late homework will be accepted for any reason. However, we may forgive homeworks in
extenuating circumstances; ask the instructor for details.

• Algorithms or proofs containing phrases like “and so on” or “repeat this process for all n”,
instead of an explicit loop, recursion, or induction, will receive a score of 0.

• You would lose all points for unnecessarily long solutions (say longer than twice what the
instructor considers reasonable length). A long correct solution is as useless as a short,
brilliant incorrect solution.

• In particular, partial credit would be given to work that has real merit. Just writing stuff
would not get you points in this class. If you do not have a clue, just say so.

• Unless explicitly stated otherwise, every homework problem requires a proof.

• Submission of homeworks is via gradescope.

• Every problem or subproblem solution must start on its own page, and contain the
problem/subproblem number on the top of the page.

1For example: “I found the solution to this exercise on http://www.endoftheinternet.com/. Since I understand
the submission guidelines, I read this solution carefully, understood it, believe that it is correct, and I wrote it out in
my own words. I was, of course, not so mind boggling stupid to just cut and paste some random text I found on the
internet, because I know the class staff is advanced enough that they can also search my solution and see if I copied it
from somewhere.” (Of course, you need only the first sentence.)

1

http://www.endoftheinternet.com/

1 (100 pts.) How to solve a recurrence?

Solving recurrences is one of the dark arts of computer science, made dark by the awful way it is
being taught. This exercise takes you through the process of solving some such recurrences. Once
you master the technique shown in this exercise, it should be enough for you to be able to solve
all the recurrences you would encounter in this class. Jeff Erickson has class notes on how to solve
recurrences, see here:

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/99-recurrences.pdf.

(Specifically, section 3.)

Also, see Part IV, and also the detailed solution of the merge sort algorithm recurrence, in the
following:

https://courses.engr.illinois.edu/cs374/fa2017/slides/10_recursion_divide_conquer.pdf

For each of the following recurrences, provide the following information:

(I) d: The depth of the recurrence tree.
(II) ni: The number of nodes in the recurrence tree of depth exactly i.

(III) Li: The total contribution associated with all the nodes of level i (potentially an upper bound,
as tight as possible, on this quantity).

(IV) An upper bound, as tight as possible, on ∆ =
∑d

i=0 Li.
(V) An upper bound, as tight as possible, on the recurrence value.

(Provide detailed proof if the calculations/details are not immediate.) For all the recurrences
below, the assumption is that the function is bounded by a small positive constant, if the parameter
n is smaller than, say, 10,

[As tight as possible = within reasonable effort. Usually an estimate correct within a constant
factor is good enough if you can get it. For the depth of the recurrence part, you want the exact
quantity within small additive factor.]

2

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/99-recurrences.pdf
https://courses.engr.illinois.edu/cs374/fa2017/slides/10_recursion_divide_conquer.pdf

Example: f(n) = 2f(bn/2c) + 1/n.
Solution:
(I) The recurrence tree in this case is a full binary tree. Here is a figure showing the

first four levels (assuming n is a power of two):

n : 1/n

n/2: 2/n n/2: 2/n

n/4: 4/n n/4: 4/n n/4: 4/n n/4: 4/n

n/8: 4/n n/8: 4/n n/8: 4/n n/8: 4/n n/8: 4/n n/8: 4/n n/8: 4/n n/8: 4/n

[The tree of course continues in this fashion all the way down.]

Since n can be divided at most dlog2 ne before it becomes smaller than 1, it follows
that the depth of the recurrence is:

d = dlg ne

(reminder: lg n = log2 n).
(II) ni ≤ 2i – since the ith level of a binary tree has 2i nodes.

(III) Li = ni · 1/(n/2i) ≤ 22i/n.
(IV) ∆ =

∑d
i=0 Li =

∑d
i=0 22i/n = O(n).

(V) f(n) = O(∆) = O(n).

[Explanation (you do not need to include this in your solution): f(n) can be
interpreted as the total amount of work done in all the nodes of the tree, which is
just ∆. Or O(∆) since constants don’t matter.]

1.A. (10 pts.) A(n) = A
(⌈
n1/3

⌉)
+ 1.

1.B. (10 pts.) B(n) = B
(⌈
n1/3/3

⌉
+ blog nc

)
+ n, where log n = log10 n.

[Hint: Solve for a simpler recurrence B′(n), such that B′(n) ≥ B(n), and use part (A).]

1.C. (20 pts.) C(n) = 5C
(
dn/4e

)
+ n.

1.D. (20 pts.) D(n) = D(blog nc) + log log n.

1.E. (20 pts.) E(n) = 2E
(
b(5/24)nc

)
+ E

(
bn/3c

)
+ E

(
bn/4c

)
+O(n).

[Hint: What is the total size of the subproblems in the first level of the recurrence? (Repeat
for second level, and third level)]

1.F. (20 pts.) F (n) =
∑8

i=1 F (Ni) +O(n3), where N1, . . . , N8 ≤ n/2.

3

2 (100 pts.) The best of all possible aliens.

The following exercise verify that you can do some basic probability calculations, how to compute
expectations, manipulate them, and how to apply Markov’s inequality. (Consult with the wikipedia
page https://en.wikipedia.org/wiki/Expected_value if you want a refresh on this stuff.)

2.A. (30 pts.) Let v1, . . . , vn be n aliens. Let π : JnK → n be a random permutation of
JnK = {1, . . . , n} chosen uniformly at random. Every alien vi has fi friends, and let F (vi) ⊆
{v1, . . . , vn} be its set of friends. Thus, the align vi is placed at location π(i) in the permuta-
tion. The alien vi is a leader at time i, if π(i) < minvj∈F (vi) π(j). That is, vi (i.e., i) appears
in the random permutation before all its friends. What is the probability of vi to be a leader?

2.B. (30 pts.) Let Xi be an indicator variable that is 1 if vi is a leader. What is E[Xi]?

Provide a concise formula for the quantity µ = E[
∑n

i=1Xi].

2.C. (40 pts.) Provide a self contained proof that µ ≥ n/(
∑n

i=1 fi/n+ 1).

[Hint: Prove that for any x1, . . . , xn > 0, we have that
∑

i 1/xi ≥ n/(
∑
xi/n).]

4

https://en.wikipedia.org/wiki/Expected_value

3 (100 pts.) Some boolean logic.

The following exercise is intended to give you some intuition why being able to decide if a boolean
formula can be used to solve various optimization problems.

A boolean formula is defined over variables that might have a value either 0 or 1. A basic token
is either a variable, or 0 or 1. A formula is now defined recursively, as follows:

• Given two boolean formulas F1, F2, the and of the two formulas is F1 ∧ F2 – this is a new
formula that is true if and only if both F1 and F2 are true.

• Given two boolean formulas F1, F2, the or of the two formulas is F1 ∨ F2 – this is a new
formula that is true if and only if at least one of F1 and F2 is true.

• Given a boolean formulas F , the not of F is F – this is a new formula that is true (i.e., 1) if
and only if F is false (i.e., 0), and vice versa.

• Given a formula F , and a boolean variable y, the new formula y = F is true if and only if y
and F have the same value.

As an example y = (y = x ∧ z) is a valid boolean formula. An input variable is a variable whose
value is specified in advance. A variable in a formula that is not an input variable, is a free variable.
A formula is satisfiable if there is an assignment to its free variables such that the formula evaluates
to true (for the specified values of the input variables).

In the following you can assume n is a power of 2.

Build a collection F of formulas, that uses the input variables x1, . . . , xn, and involve potentially
more variables. In particular, the new formulas have also variables y1, . . . , yn. Describe how to
construct a family of formulas F such that, all the formulas in F are satisfiable simultaneously if
and only if y1, . . . , yn are the bits x1, . . . , xn sorted in decreasing order (hint, for x1, x2, F(2) =
{y1 = x1 ∨ x2 and y2 = x1 ∧ x2} works).

(Your construction should be simple and self contained.)

What is the total length of all the formulas in F as a function of n? (A construction with polynomial
dependency on n is good enough. Getting the “right” answer here [i.e., O(n log n)] is doable but
extremely difficult.)

(Naturally, asking for an assignment that satisfies all the formulas in a collection of formulas F, is
equivalent to asking for a satisfying assignment for the single formula

∧
φ∈F φ.)

[Hint: The easiest solution is probably trying to simulate bubble sort.]

5

