All problems are of equal value.

1. Suppose f is an (s,t)-flow in a network $G = (V,E)$ and let f' be another (s,t)-flow. Prove that there is an (s,t)-flow of value $|f'| - |f|$ in the residual network G_f, where $|f|, |f'|$ are the values of the flows f, f' respectively. Note that $|f'| - |f|$ may be negative.

Using the above briefly argue that if f is an (s,t)-flow then f is a maximum-flow iff there is no s-t path in G_f. Note that this gives an alternate proof of correctness of the correctness of the augmenting path algorithms.

2. Suppose $G = (V,E)$ is a flow-network with integer capacities and f is an integer valued s-t flow in G. Let $G' = (V,E')$ be the support of f; more formally $E' = \{ e \in E \mid f(e) > 0 \}$.

- Given G and f describe a linear time algorithm to check whether f is a maximum flow in G.
- Suppose e is contained in a directed cycle in G'. Show that there is another flow f' such that $f'(e) \leq f(e) - 1$ and $|f'| = |f|$.
- Assuming f is a maximum flow in G describe a linear-time algorithm to find a new maximum flow where the capacity of a specific edge e is reduced by one unit.

3. Let $G = (V,E)$ be a flow network with integer edge capacities. We have seen algorithms that compute a minimum s-t cut via maximum flow. For the problem below assume that you only have black box access to an algorithm that given G and nodes s, t outputs a minimum cut between s and t.

- Describe a simple example of a flow-network G and two nodes s, t such that there are two distinct s-t minimum cuts with the same capacity but different number of edges in the cuts.
- Given G and s, t and an integer k describe an algorithm that checks whether G has a minimum cut with at most k edges.

No proof of correctness necessary but we recommend a brief justification. And make sure you have a clear and understandable algorithm.