Overview

logistics:
- pset1 out, due W10 (tomorrow) — can submit in *groups* of ≤ 3

last time:
- dynamic programming on trees
- maximum independent set
- dominating set

today:
- shortest paths
 - with negative lengths
 - all-pairs
Shortest Paths, with Negative Lengths

questions:
- what is the length of the shortest path between s and t?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with negative cycles?

remarks:
- computing the length of the shortest simple $s \rightarrow t$ path (with possibly negative lengths) is NP-hard — contains the Hamiltonian path problem

total cost:

$$9 + 10 + (-16 + 11 + 3) \cdot k + (-16) + 16 = 19 - 3k \rightarrow -\infty$$
Definition

$G = (V, E)$ directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

- A **path in** G is a sequence of distinct vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all i. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.

- A **walk in** G is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all i. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.

- The **length of a walk** is the sum of the edge lengths $\sum_i \ell(v_i, v_{i+1})$.

- The **distance from s to t in** G, denoted $\text{dist}(s, t)$, is the length of the shortest (s, t)-walk, $\text{dist}(s, t) := \min_{(s,t)-\text{walk } w} \ell(w)$.

remarks:

- if (s, t)-walk containing a negative length cycle $\implies \text{dist}(s, t) = -\infty$

- if *no* (s, t)-walk containing a negative length cycle \implies shortest walk is a path \implies shortest walk $\leq n - 1$ edges and is of finite length
Shortest Paths, with Negative Lengths (III)

Definition

\(G = (V, E) \) directed (simple) graph, with edge length function \(\ell : E \to \mathbb{Z} \). The (single-source) shortest path problem (with negative weights) is to:

- given \(s, t \in V \), find a minimum length \((s, t)\)-path or find an \((s, t)\)-walk with a negative cycle \(\implies \text{dist}(s, t) = -\infty \)
- given \(s \in V \), compute \(\text{dist}(s, t) \) for all \(t \in V \)
- determine if \(G \) has any negative cycle

Remarks:

- Negative lengths can be natural in modelling real life
 - E.g., demand/supply on an electrical grid
 - Negative cycles manifest as arbitrage
- Negative lengths can arise as by-products of other algorithms, e.g., flows in graphs
Dijkstra’s Algorithm

Dijkstra’s algorithm: greedily grow shortest paths from source s
Dijkstra’s Algorithm, with Negative Lengths?

Dijkstra’s algorithm: greedily grow shortest paths from source \(s \)

![Graph with vertices and edges labeled with distances](image)

remarks:
- greedy exploration, ordering vertices \(v \in V \) by \(\text{dist}(s, v) \) — without updates!
- \(\Rightarrow \) algorithm assumes the distance only grows as the graph is explored
- \(\equiv \) assumes all edge lengths are non-negative
Lemma

$G = (V, E)$ directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = t$ is a shortest (s, t)-walk, then

1. $s \rightarrow v_1 \rightarrow \cdots \rightarrow v_i$ is a shortest (s, v_i)-walk, for $i \leq k$
2. if ℓ is non-negative, $\text{dist}(s, v_i) \leq \text{dist}(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste. (2) Clear.

Remarks:

- shortest walks are shortest paths, if no negative cycle
- Dijkstra’s algorithm defines subproblems by restricting the graph by $\text{dist}(s, \cdot)$
- idea: parameterize subproblems by number of edges in a walk, and allow updates to $\text{dist}(s, \cdot)$
Shortest Paths, with Negative Lengths (V)

Definition

\(G = (V, E) \) directed (simple) graph, with edge length function \(\ell : E \to \mathbb{Z} \). For \(s, t \in V \), define \(\text{dist}_k(s, t) \) to be the length of the shortest \((s, t)\)-walk using \(\leq k \) edges.

\[
\text{dist}_k(s, t) := \min_{(s, t)\text{-walk } w \mid |w| \leq k} \ell(w).
\]

Remarks:

- \(\text{dist}_k(s, t) = \infty \) if no \((\leq k)\)-edge \((s, t)\)-walk
- \(\text{dist}_0(s, s) = 0 \), \(\text{dist}_0(s, v) = \infty \) for \(v \neq s \)
Lemma

\[G = (V, E), \ell : E \to \mathbb{Z}. \text{ Then for all } s, t \in V, \]
\[\text{dist}_k(s, t) = \min \left\{ \text{dist}_{k-1}(s, t), \min_{v \in V} \{\text{dist}_{k-1}(s, v) + \ell(v, t)\} \right\}. \]

Proof.

Let \(s = v_0 \to v_1 \to v_2 \to \cdots \to v_j = t \) be a shortest length \(j \leq k \) \((s, t)\)-walk. Then,

- \(j < k \): hence this is a \((\leq k - 1)\)-edge \((s, t)\)-walk of length \(\text{dist}_{k-1}(s, t) \)
- \(j = k \): hence \(s = v_0 \to v_1 \to v_2 \to \cdots \to v_{k-1} \) is a shortest length \((\leq k - 1)\)-edge \((s, v_{k-1})\) walk \(\implies\) can add \(\ell(v_{k-1}, t) \) to reach \(t \)

remark: \(\ell(v, t) = \infty \) if there is no edge
Theorem

$G = (V, E), \ell : E \rightarrow \mathbb{Z}, s \in V$, with every vertex reachable from s.

1. **If there are no negative length cycles, then for all $v \in V$,
 \[\text{dist}_{n-1}(s, v) \leq \text{dist}_n(s, v), \text{ and even } \text{dist}_{n-1}(s, v) = \text{dist}(s, v). \]

2. **If for all $v \in V$, \text{dist}_{n-1}(s, v) \leq \text{dist}_n(s, v), then there are no negative length cycles.**
Lemma

\[G = (V, E), \ell : E \rightarrow \mathbb{Z}. \text{ Then for all } s, t \in V, \]

\[\text{dist}_k(s, t) = \min \left\{ \begin{array}{l}
\text{dist}_{k-1}(s, t) \\
\min_{v \in V} \{\text{dist}_{k-1}(s, v) + \ell(v, t)\}
\end{array} \right\}. \]

Corollary

For all \(k \geq 0, \)

- \(\text{dist}_k(s, t) \leq \text{dist}_{k-1}(s, t) \)
- If for all \(v \in V, \text{dist}_k(s, t) = \text{dist}_{k-1}(s, t) \)

\[\implies \text{ for all } v \in V, \text{dist}_{k+1}(s, t) = \text{dist}_k(s, t) \]

\[\implies \text{ for all } v \in V, \text{dist}_{k+2}(s, t) = \text{dist}_{k+1}(s, t) \implies \ldots \]
Proposition

\[G = (V, E), \ell : E \to \mathbb{Z}, s \in V, \text{ with every vertex reachable from } s. \text{ If there are no negative length cycles, then for all } v \in V, \text{ dist}_{n-1}(s, v) \leq \text{ dist}_n(s, v). \]

Proof.

Let \(s = v_0 \to v_1 \to \cdots \to v_{k-1} \to v_k = v \) be a walk of \((\leq n)\)-edges, with length \(\text{dist}_n(s, v) \).

- If \(k < n \), then this is a \((< n)\)-edge walk and hence of length \(\geq \text{dist}_{n-1}(s, v) \).
- If \(k = n \), then the walk visits \(n + 1 \) vertices \(\implies \) some vertex is repeated \(\equiv \) there is a cycle. As the cycle is of non-negative length \(C \geq 0 \), we can remove it to obtain a \((< n)\)-edge \((s, v)\)-walk of value \(d = \text{dist}_n(s, v) - C \) with \(\text{dist}_n(s, v) \geq d \geq \text{dist}_{n-1}(s, v) \).
Shortest Paths, with Negative Lengths (X)

Proposition

\[G = (V, E), \ell : E \to \mathbb{Z}, \ s \in V, \text{ with every vertex reachable from } s. \text{ If for all } v \in V, \]
\[\text{dist}_{n-1}(s, v) \leq \text{dist}_n(s, v), \text{ then } \lim_{k \to \infty} \text{dist}_k(s, v) \text{ is finite for all } v \in V. \]

Proof.

By previous corollary, for all \(v \in V \), \(\text{dist}_{n-1}(s, v) \geq \text{dist}_n(s, v) \implies \) for all \(v \in V \),
\[\text{dist}_{n-1}(s, v) = \text{dist}_n(s, v) = \text{dist}_{n+1}(s, v) = \text{dist}_{n+2}(s, v) = \cdots. \]
As all \(v \) are reachable from \(s \) \(\implies \) \(\text{dist}_{n-1}(s, v) \leq \infty \) for all \(k \) and \(v \). Hence
\[\lim_{k \to \infty} \text{dist}_k(s, v) = \text{dist}_{n-1}(s, v) \text{ is finite for all } v. \]
Proposition

\[G = (V, E), \ l : E \to \mathbb{Z}, \ s \in V, \ \text{with every vertex reachable from } s. \ \text{If there is a} \ (s, v)\text{-walk containing a negative length cycle, then } \lim_{k \to \infty} \text{dist}_k(s, v) = -\infty. \]

Proof.

Let \(s \leadsto u \leadsto u \leadsto v \) be an \((s, v)\)-walk with length \(L \), where \(u \leadsto u \) is a negative length cycle of length \(-C < 0\). Then consider the \((s, v)\)-walk \(s \leadsto u \leadsto u \leadsto u \leadsto v \), which is of value \(L - C \). Hence, for any \(j \) there is \((s, v)\)-walk of length \(L - C \cdot j \). Hence \(\lim_{k \to \infty} \text{dist}_k(s, v) = -\infty. \)
Proposition

$G = (V, E), \ell : E \to \mathbb{Z}, s \in V,$ with every vertex reachable from s. If for all $v \in V$, $\text{dist}_{n-1}(s, v) \leq \text{dist}_n(s, v)$, \(\lim_{k \to \infty} \text{dist}_k(s, v) \) is finite for all $v \in V$.

Proposition

$G = (V, E), \ell : E \to \mathbb{Z}, s \in V,$ with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k \to \infty} \text{dist}_k(s, v) = -\infty$.

Corollary

$G = (V, E), \ell : E \to \mathbb{Z}, s \in V,$ with every vertex reachable from s. If for all $v \in V$, $\text{dist}_{n-1}(s, v) \leq \text{dist}_n(s, v)$, then there are no negative length cycles.
Theorem

\(G = (V, E), \ell : E \to \mathbb{Z}, s \in V, \) with every vertex reachable from \(s. \)

1. If there are no negative length cycles, then for all \(v \in V, \)
 \[\text{dist}_{n-1}(s, v) \leq \text{dist}_n(s, v), \]
 and
 \[\text{dist}_{n-1}(s, v) = \lim_{k \to \infty} \text{dist}_k(s, v) = \text{dist}(s, v). \]

2. If for all \(v \in V, \) \(\text{dist}_{n-1}(s, v) \leq \text{dist}_n(s, v), \) then there are no negative length cycles.
Bellman-Ford

(single source) shortest paths: source $s \in V$, can reach every other node

- for each $v \in V$
 - $d_0[s][v] = \infty$
- $d_0[s][s] = 0$
- for $1 \leq k \leq n$, $v \in V$
 - $d_k[s][v] = d_{k-1}[s][v]$
 - for $u \in N^-(v)$
 - $d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u,v)\}$
- for $v \in V$
 - if $d_n[s][v] < d_{n-1}[s][v]$
 - return ‘‘negative cycle detected’’
 - return $d_{n-1}[s][\cdot]$

correctness: clear

complexity:

- **time**
 - clearly $O(n^3)$
 - better: $O(mn)$, $d_k[s][\cdot]$ updates along edges

- **space**
 - clearly $O(n^2)$
 - better: only store $d_{cur}[s][\cdot]$ and $d_{prev}[s][\cdot] \implies O(n)$

Bellman-Ford (II)

remarks:

- compute actual paths by storing pointers indicating how \(d_k[s'][\cdot]\) was updated, e.g.,
 \[v_{k-1} = \arg\min_{u \in V} \{\text{dist}_{k-1}(s, u) + \ell(u, v_k)\}\ .\]

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles reachable from \(s\) in \(G\)
 \[\implies\] one Bellman-Ford call per vertex will detect if there is any negative cycle in \(G\)
 \[\implies\] \(O(mn^2)\) time
 - *better:* consider \(G' = (V \cup \{s'\}, E \cup \{(s', v)\}_{v \in V})\) with \(\ell'(s', v) = 0\)
 \[\implies\] all negative cycles in \(G\) are reachable from \(s'\) in \(G'\)
 \[\implies\] one Bellman-Ford required \(\implies\) \(O(mn)\) time

- directed acyclic graphs
 - no (negative) cycles
 - can simplify Bellman-Ford so \(\text{dist}_k(s, \cdot)\) only updates \(v_k\), according to topological ordering \(v_1 \prec v_2 \prec \cdots \prec v_n\) — yields Dijkstra-esque algorithm
 \[\implies\] \(O(m + n)\) time (**exercise**)
All-Pairs Shortest Paths

Definition

\(G = (V, E) \) directed (simple) graph, \(\ell : E \rightarrow \mathbb{Z} \). The **shortest path problem** is to:

- given \(s, t \in V \), find a minimum length \((s, t)\)-path
- given \(s \in V \), compute \(\text{dist}(s, t) \) for all \(t \in V \) (single-source)
- compute \(\text{dist}(s, t) \) for all \(s, t \in V \) (all pairs)

single-source:

- **Dijkstra:**
 - non-negative lengths
 - \(O((m + n) \log n) \) time (heaps), \(O(m + n \log n) \) (Fibonacci heaps)

- **Bellman-Ford:**
 - arbitrary weights
 - \(O(mn) \) time
All-Pairs Shortest Paths (II)

Definition

A directed (simple) graph $G = (V, E)$ and a length function $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- given $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute $\text{dist}(s, t)$ for all $t \in V$ (single-source)
- compute $\text{dist}(s, t)$ for all $s, t \in V$ (all pairs)

all-pairs:

- n runs of *Dijkstra*:
 - non-negative lengths
 - $O(n \cdot (m + n) \log n)$ time (heaps), $O(n \cdot (m + n \log n))$ (Fibonacci heaps)

- n runs of *Bellman-Ford*:
 - arbitrary weights
 - $O(n \cdot mn)$ time $\implies \Theta(n^4)$ if $m = \Theta(n^2)$

question: can we do better?
idea: use a new parameterization of the subproblems

Definition

\(G = (V, E) \) directed (simple) graph, with edge length function \(\ell : E \rightarrow \mathbb{Z} \). Order \(V \) as \(v_1 \prec v_2 \prec \cdots \prec v_n \). A \((u, v)\)-walk \(u = w_0 \rightarrow w_1 \rightarrow \cdots \rightarrow w_i = v \) has **intermediate index** \(\leq j \), if \(w_1, \ldots, w_{i-1} \in \{v_1, \ldots, v_j\} \). For \(s, t \in V \), define \(\text{dist}^k(s, t) \) to be the length of the shortest \((s, t)\)-walk of intermediate index \(\leq k \).

\[\begin{align*}
\text{dist}^0(v_3, v_4) &= \ell(v_3, v_4) = 8 \\
\text{dist}^1(v_3, v_4) &= 5 \\
\text{dist}^2(v_3, v_4) &= 4
\end{align*} \]
Lemma

\(G = (V, E), \ell : E \to \mathbb{Z}, \text{ with no negative cycles. Then for all } s, t \in V, \)
\(\text{dist}^0(s, t) = \ell(s, t), \text{ and} \)
\[\text{dist}^k(s, t) = \min \left\{ \text{dist}^{k-1}(s, t), \text{dist}^{k-1}(s, v_k) + \text{dist}^{k-1}(v_k, t) \right\}. \]

Proof.

Let \(s = w_0 \to w_1 \to w_2 \to \cdots \to w_i = t \) be a shortest length \((s, t)\)-walk of intermediate index \(\leq k \) and length \(\text{dist}^k(s, t) \). There are two cases:

- **index < k:** hence is of value \(\text{dist}^{k-1}(s, t) \)
- **index = k:**
 - no negative cycles \(\implies \) shortest walk is *path* \(\implies \) \(v_k \) appears exactly once
 \(\implies \) \(s \rightsquigarrow v_k \) path and \(v_k \rightsquigarrow t \) path are of index < k, and must be shortest paths
Floyd-Warshall

for $1 \leq i, j \leq n$
$d^0[i][j] = \ell(i, j)$

for $1 \leq k \leq n$
 for $1 \leq i, j \leq n$

 \[
 d^k[i][j] = \min \left\{ d^{k-1}[i][j], d^{k-1}[i][k] + d^{k-1}[k][j] \right\}
 \]

for $1 \leq i \leq n$
 if $d^n[i][i] < 0$
 return ‘‘negative cycle detected’’

complexity:

- $O(n^3)$ time
- space
 - clearly $O(n^3)$
 - better: only store $d^{\text{cur}}[\cdot][\cdot]$ and $d^{\text{prev}}[\cdot][\cdot] \rightarrow O(n^2)$

correctness:

- if no negative cycles, correctness is clear
- if some negative cycle, ???

remarks:

- compute actual paths by storing pointers indicating how $d^k[\cdot][\cdot]$ was updated
Floyd-Warshall (II)

Proposition

\[G = (V, E), \ell : E \to \mathbb{Z}, \text{with some negative cycle. Then the Floyd-Warshall}\]

algorithm correctly detects this cycle.

Proof.

Let \(k \leq n \) be the minimum index of a negative length cycle

\[k = \min_{\text{negative length } C} \max_{i : v_i \in C} i. \]

Pick such a cycle \(C \), where \(C \) is

\[v_k = w_0 \to w_1 = v_i \to \cdots \to w_j = v_k. \]

By choice of \(k \),

\[
\begin{align*}
\text{d}^{k-1}[k][i] &= \text{dist}^{k-1}(k, i) \leq \ell(w_0, w_1) \\
\text{d}^{k-1}[i][k] &= \text{dist}^{k-1}(i, k) \leq \ell(w_1, w_2) + \cdots + \ell(w_{j-1}, w_j) \\
\Rightarrow \quad \text{d}^k[k][k] &\leq \text{d}^{k-1}[k][i] + \text{d}^{k-1}[i][k] = \ell(w_0, w_1) + \cdots + \ell(w_{j-1}, w_j) = \ell(C) < 0 \\
\Rightarrow \quad \text{d}^{k+1}[k][k] &\leq \text{d}^k[k][k] < 0 \\
\Rightarrow \quad \text{d}^n[k][k] < 0 &\Rightarrow \text{negative cycle detected}
\end{align*}
\]
Floyd-Warshall

for \(1 \leq i, j \leq n\)

\[d^0[i][j] = \ell(i, j)\]

for \(1 \leq k \leq n\)

for \(1 \leq i, j \leq n\)

\[d^k[i][j] = \min\left\{d^{k-1}[i][j], d^{k-1}[i][k] + d^{k-1}[k][j]\right\}\]

for \(1 \leq i \leq n\)

if \(d^n[i][i] < 0\)

return ‘‘negative cycle detected’’

remarks:

- compute actual paths by storing pointers indicating how \(d^k[\cdot][\cdot]\) was updated

complexity:

- \(O(n^3)\) time
- space
 - clearly \(O(n^3)\)
 - better: only store \(d^{\text{cur}}[\cdot][\cdot]\) and \(d^{\text{prev}}[\cdot][\cdot] \implies O(n^2)\)

correctness:

- if no negative cycles, correctness is clear
- if some negative cycle, correctness is now done
Overview (II)

logistics:
- pset1 out, due W10 (tomorrow) — can submit in *groups* of ≤ 3

today:
- shortest paths
 - with negative lengths — Bellman-Ford in $O(mn)$ time
 - all-pairs — Floyd-Warshall in $O(n^3)$ time

next time:
- *more* dynamic programming