CS 473: Algorithms, Fall 2019

Reductions

Lecture 22 November 14, 2019

Part I

Reductions

Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm for Problem Y, we can use it to find an algorithm for Problem X.

Using Reductions

- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)

Example 1: Bipartite Matching and Flows

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size $\geq k$?

Solution

Reduce it to Max-Flow. G has a matching of size $\geq k$ iff there is a flow from s to t of value $\geq k$ in the auxiliary graph G'.

Types of Problems

Decision, Search, and Optimization

- Decision problem. Example: given n, is n prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of n.

Optimization and Decision problems

For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between s and t.

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from S to C0, of value at least C1?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have $\frac{\text{Yes}}{\text{No}}$ answers. This makes them easy to work with.

Problems vs Instances

- **1** A problem Π consists of an **infinite** collection of inputs $\{l_1, l_2, \ldots, \}$. Each input is referred to as an **instance**.
- The size of an instance I is the number of bits in its representation.
- **3** For an instance I, sol(I) is a set of feasible solutions to I.
- For optimization problems each solution $s \in sol(I)$ has an associated value.

Examples

Example

An instance of **Bipartite Matching** is a bipartite graph, and an integer k. The solution to this instance is "YES" if the graph has a matching of size $\geq k$, and "NO" otherwise.

Example

An instance of Max-Flow is a graph G with edge-capacities, two vertices s, t, and an integer k. The solution to this instance is "YES" if there is a flow from s to t of value $\geq k$, else 'NO".

What is an algorithm for a decision Problem X?

It takes as input an instance of X, and outputs either "YES" or "NO".

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- 2 \mathcal{A}_{Y} : algorithm for Y:
- $\bullet \longrightarrow \text{New algorithm for } X$:

```
\mathcal{A}_X(I_X):

// I_X: instance of X.

I_Y \leftarrow \mathcal{R}(I_X)

return \mathcal{A}_Y(I_Y)
```


If \mathcal{R} and \mathcal{A}_Y polynomial-time $\implies \mathcal{A}_X$ polynomial-time.

Comparing Problems

- "Problem X is no harder to solve than Problem Y".
- ② If Problem X reduces to Problem Y (we write $X \leq Y$), then X cannot be harder to solve than Y.
- Sipartite Matching ≤ Max-Flow.
 Bipartite Matching cannot be harder than Max-Flow.
- Equivalently,
 Max-Flow is at least as hard as Bipartite Matching.
- $X \leq Y:$
 - \bullet X is no harder than Y, or
 - Y is at least as hard as X.

Polynomial-time reductions

We say that an algorithm is **efficient** if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient algorithm for X.

Polynomial-time Reduction

A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- lacktriangle given an instance I_X of X, A produces an instance I_Y of Y
- ② \mathcal{A} runs in time polynomial in $|I_X|$.
- **3** Answer to I_X YES iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a **Karp reduction**. Most reductions we will need are Karp reductions.

Reductions again...

Let X and Y be two decision problems, such that X can be solved in polynomial time, and $X \leq_P Y$. Then

- (A) Y can be solved in polynomial time.
- **(B) Y** can NOT be solved in polynomial time.
- (C) If Y is hard then X is also hard.
- (D) None of the above.
- (E) All of the above.

Polynomial-time reductions and hardness

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If $X \leq_P Y$ and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 ${\mathcal R}$ can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm A that has the following properties:

- **1** Given an instance I_X of X, A produces an instance I_Y of Y.
- 2 \mathcal{A} runs in time polynomial in $|I_X|$. This implies that $|I_Y|$ (size of I_Y) is polynomial in $|I_X|$.
- **3** Answer to I_X YES iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions

Transitivity of Reductions

Proposition

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y In other words show that an algorithm for Y implies an algorithm for X.

Using Reductions to show Hardness

Here, we say that a problem is "hard" if there is no polynomial-time algorithm known for it (and it is believed that such an algorithm does not exist)

- Start with an existing "hard" problem X
- Prove that $X \leq_P Y$
- Then we have shown that Y is a "hard" problem

Examples of hard problems

Problems

- SAT
- **2** 3SAT
- Independent Set and Clique
- Vertex Cover
- Set Cover
- 6 Hamilton Cycle
- Knapsack and Subset Sum and Partition
- Integer Programming
- **9** . . .

Part II

Examples of Reductions

- **1** independent set: no two vertices of V' connected by an edge.
- clique: every pair of vertices in V' is connected by an edge of G.

- **1** independent set: no two vertices of V' connected by an edge.
- clique: every pair of vertices in V' is connected by an edge of G.

- **1** independent set: no two vertices of V' connected by an edge.
- Clique: every pair of vertices in V' is connected by an edge of G.

- **1** independent set: no two vertices of V' connected by an edge.
- Clique: every pair of vertices in V' is connected by an edge of G.

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.

Question: Does G has an independent set of size $\geq k$?

Problem: Clique

Instance: A graph G and an integer k.

Question: Does G has a clique of size > k?

An instance of Independent Set is a graph G and an integer k.

An instance of **Independent Set** is a graph G and an integer k.

An instance of Independent Set is a graph G and an integer k.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.)

An instance of Independent Set is a graph G and an integer k.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.)

An instance of Independent Set is a graph G and an integer k.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.)

An instance of Independent Set is a graph G and an integer k.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.)

- Independent Set ≤ Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- Also... Independent Set is at least as hard as Clique.

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.

Goal: Is there a vertex cover of size $\leq k$ in G?

Can we relate **Independent Set** and **Vertex Cover**?

Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if $V \setminus S$ is a vertex cover.

Proof.

- (\Rightarrow) Let **S** be an independent set
 - Consider any edge $uv \in E$.
 - 2 Since **S** is an independent set, either $u \not\in S$ or $v \not\in S$.
 - **3** Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.
- (\Leftarrow) Let $V \setminus S$ be some vertex cover:
 - Consider $u, v \in S$
 - **2** uv is not an edge of G, as otherwise $V \setminus S$ does not cover uv.
 - \longrightarrow **S** is thus an independent set.

Independent Set \leq_P Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- ② G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq n-k$
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- **1** Therefore, Independent Set \leq_P Vertex Cover. Also Vertex Cover \leq_P Independent Set.

The **Set Cover** Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

The **Set Cover** Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

Example

Let
$$U=\{1,2,3,4,5,6,7\},\ k=2$$
 with
$$S_1=\{3,7\}\quad S_2=\{3,4,5\}$$

$$S_3=\{1\}\quad S_4=\{2,4\}$$

$$S_5=\{5\}\quad S_6=\{1,2,6,7\}$$

The **Set Cover** Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

Example

Let
$$U = \{1, 2, 3, 4, 5, 6, 7\}$$
, $k = 2$ with
$$S_1 = \{3, 7\} \quad S_2 = \{3, 4, 5\}$$
$$S_3 = \{1\} \quad S_4 = \{2, 4\}$$
$$S_5 = \{5\} \quad S_6 = \{1, 2, 6, 7\}$$

 $\{S_2, S_6\}$ is a set cover

Vertex Cover \leq_P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

Vertex Cover \leq_{P} Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

• Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.

Vertex Cover \leq_P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- U = E

Vertex Cover \leq_{P} Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- U = E.
- We will have one set corresponding to each vertex; $S_{\nu} = \{e \mid e \text{ is incident on } \nu\}.$

Vertex Cover \leq_{P} Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- U = E.
- We will have one set corresponding to each vertex; $S_v = \{e \mid e \text{ is incident on } v\}.$

Observe that G has vertex cover of size k if and only if U, $\{S_v\}_{v \in V}$ has a set cover of size k. (Exercise: Prove this.)

Vertex Cover ≤_P Set Cover: Example

Vertex Cover ≤_P Set Cover: Example

Let
$$U = \{a, b, c, d, e, f, g\},\ k = 2 \text{ with}$$

$$S_1 = \{c, g\}$$
 $S_2 = \{b, d\}$
 $S_3 = \{c, d, e\}$ $S_4 = \{e, f\}$
 $S_5 = \{a\}$ $S_6 = \{a, b, f, g\}$

Vertex Cover ≤_P Set Cover: Example

Let
$$U = \{a, b, c, d, e, f, g\}$$
, $k = 2$ with

$$S_1 = \{c, g\}$$
 $S_2 = \{b, d\}$
 $S_3 = \{c, d, e\}$ $S_4 = \{e, f\}$
 $S_5 = \{a\}$ $S_6 = \{a, b, f, g\}$

 $\{S_3, S_6\}$ is a set cover

{3, 6} is a vertex cover

Proving Reductions

To prove that $X \leq_P Y$ you need to give an algorithm A that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- ② Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to
 I_X is YES
 - 2 typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_Y is NO).
- Runs in polynomial time.

Example of incorrect reduction proof

Try proving Matching \leq_P Bipartite Matching via following reduction:

- Given graph G = (V, E) obtain a bipartite graph G' = (V', E') as follows.
 - Let $V_1 = \{u_1 \mid u \in V\}$ and $V_2 = \{u_2 \mid u \in V\}$. We set $V' = V_1 \cup V_2$ (that is, we make two copies of V)
 - $\mathbf{9} \ \mathbf{E'} = \left\{ \mathbf{u}_1 \mathbf{v}_2 \ \middle| \ \mathbf{u} \neq \mathbf{v} \text{ and } \mathbf{u}\mathbf{v} \in \mathbf{E} \right\}$
- ② Given G and integer k the reduction outputs G' and k.

"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why?

"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $u \in V$ has two copies u_1 and u_2 in G'. A matching in G' may use both copies!

Subset sum and Partition?

Problem: Subset Sum

Instance: S - set of positive integers, t: - an integer number (target). **Question:** Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x = t$?

Problem: Partition

Instance: A set **S** of **n** numbers.

Question: Is there a subset $T \subseteq S$ s.t. $\sum_{t \in T} t = \sum_{s \in S \setminus T} s$?

Assume that we can solve **Subset Sum** in polynomial time, then we can solve **Partition** in polynomial time. This statement is

- (A) True.
- (B) Mostly true.
- (C) False.
- (D) Mostly false.

II: Partition and subset sum?

Problem: Partition

Instance: A set S of n numbers. Question: Is there a subset $T \subseteq S$ s.t. $\sum_{t \in T} t = \sum_{s \in S \setminus T} s$?

Problem: Subset Sum

Instance: S - set of positive integers, t: - an integer number (target).Question: Is there a subset

 $X \subseteq S$ such that $\sum_{x \in X} x = t$?

Assume that we can solve **Partition** in polynomial time, then we can solve **Subset Sum** in polynomial time. This statement is

- (A) True.
- (B) Mostly true.
- (C) False.
- (D) Mostly false.