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Part I

Reductions
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Reductions

A reduction from Problem X to Problem Y means (informally) that
if we have an algorithm for Problem Y , we can use it to find an
algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.

2 We also use reductions to show that we can’t find algorithms for
some problems. (We say that these problems are hard.)
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Example 1: Bipartite Matching and Flows

How do we solve the Bipartite Matching Problem?

Given a bipartite graph G = (U ∪ V ,E) and number k , does G
have a matching of size ≥ k?

Solution
Reduce it to Max-Flow. G has a matching of size ≥ k iff there is a
flow from s to t of value ≥ k in the auxiliary graph G ′.
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Types of Problems

Decision, Search, and Optimization
1 Decision problem. Example: given n, is n prime?.

2 Search problem. Example: given n, find a factor of n if it
exists.

3 Optimization problem. Example: find the smallest prime
factor of n.
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Optimization and Decision problems
For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between
s and t.

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K , is there a
flow in G, from s to t, of value at least K?

While using reductions and comparing problems, we typically work
with the decision versions. Decision problems have Yes/No answers.
This makes them easy to work with.
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Problems vs Instances

1 A problem Π consists of an infinite collection of inputs
{I1, I2, . . . , }. Each input is referred to as an instance.

2 The size of an instance I is the number of bits in its
representation.

3 For an instance I , sol(I ) is a set of feasible solutions to I .

4 For optimization problems each solution s ∈ sol(I ) has an
associated value.
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Examples

Example
An instance of Bipartite Matching is a bipartite graph, and an
integer k . The solution to this instance is “YES” if the graph has a
matching of size ≥ k , and “NO” otherwise.

Example
An instance of Max-Flow is a graph G with edge-capacities, two
vertices s, t, and an integer k . The solution to this instance is
“YES” if there is a flow from s to t of value ≥ k , else ‘NO”.

What is an algorithm for a decision Problem X?
It takes as input an instance of X , and outputs either “YES” or
“NO”.
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Using reductions to solve problems

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :
AX (IX ):

// IX: instance of X.

IY ⇐R(IX )
return AY (IY )

AY

IY
YES

NO

IX
R

AX

If R and AY polynomial-time =⇒ AX polynomial-time.
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Comparing Problems

1 “Problem X is no harder to solve than Problem Y ”.

2 If Problem X reduces to Problem Y (we write X ≤ Y ), then
X cannot be harder to solve than Y .

3 Bipartite Matching ≤ Max-Flow.
Bipartite Matching cannot be harder than Max-Flow.

4 Equivalently,
Max-Flow is at least as hard as Bipartite Matching.

5 X ≤ Y :
1 X is no harder than Y , or
2 Y is at least as hard as X .
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Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem
Y (we write X ≤P Y ), and a poly-time algorithm AY for Y , we
have a polynomial-time/efficient algorithm for X .

Ax

R AYIX IY YES

NO
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Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 given an instance IX of X , A produces an instance IY of Y
2 A runs in time polynomial in |IX |.
3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

Such a reduction is called a Karp reduction. Most reductions we
will need are Karp reductions.
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Reductions again...

Let X and Y be two decision problems, such that X can be solved in
polynomial time, and X ≤P Y . Then

(A) Y can be solved in polynomial time.

(B) Y can NOT be solved in polynomial time.

(C) If Y is hard then X is also hard.

(D) None of the above.

(E) All of the above.
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Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!
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Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y . Then for any
instance IX of X , the size of the instance IY of Y produced from IX
by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Chandra and Michael (UIUC) cs473 15 Fall 2019 15 / 36



Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 Given an instance IX of X , A produces an instance IY of Y .

2 A runs in time polynomial in |IX |. This implies that |IY | (size of
IY ) is polynomial in |IX |.

3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

Such a reduction is called a Karp reduction. Most reductions we will
need are Karp reductions
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Transitivity of Reductions

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Note: X ≤P Y does not imply that Y ≤P X and hence it is very
important to know the FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
In other words show that an algorithm for Y implies an algorithm for
X .
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Using Reductions to show Hardness

Here, we say that a problem is “hard” if there is no polynomial-time
algorithm known for it (and it is believed that such an algorithm does
not exist)

Start with an existing “hard” problem X
Prove that X ≤P Y
Then we have shown that Y is a “hard” problem
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Examples of hard problems

Problems
1 SAT

2 3SAT

3 Independent Set and Clique

4 Vertex Cover

5 Set Cover

6 Hamilton Cycle

7 Knapsack and Subset Sum and Partition

8 Integer Programming

9 . . .
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Part II

Examples of Reductions
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Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .
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The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Convert G to G , in which (u, v) is an edge iff (u, v) is not an edge
of G . (G is the complement of G .)
We use G and k as the instance of Clique.
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Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Independent Set is at least as hard as Clique.
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Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .
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The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?
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Relationship between...
Vertex Cover and Independent Set

Proposition

Let G = (V ,E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

1 Consider any edge uv ∈ E .
2 Since S is an independent set, either u 6∈ S or v 6∈ S .
3 Thus, either u ∈ V \ S or v ∈ V \ S .
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv .
3 =⇒ S is thus an independent set.
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Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k

3 (G , k) is an instance of Independent Set , and (G , n − k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.
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The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S1, S2, . . . Sm of
subsets of U , and an integer k .

Goal: Is there a collection of at most k of these sets Si whose union
is equal to U?

Example

Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover
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Vertex Cover ≤P Set Cover

Given graph G = (V ,E) and integer k as instance of Vertex
Cover, construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.
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Vertex Cover ≤P Set Cover

Given graph G = (V ,E) and integer k as instance of Vertex
Cover, construct an instance of Set Cover as follows:
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Vertex Cover ≤P Set Cover

Given graph G = (V ,E) and integer k as instance of Vertex
Cover, construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E .

3 We will have one set corresponding to each vertex;
Sv = {e | e is incident on v}.
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Vertex Cover ≤P Set Cover

Given graph G = (V ,E) and integer k as instance of Vertex
Cover, construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E .

3 We will have one set corresponding to each vertex;
Sv = {e | e is incident on v}.

Observe that G has vertex cover of size k if and only if U, {Sv}v∈V
has a set cover of size k . (Exercise: Prove this.)
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Vertex Cover ≤P Set Cover: Example

1 2

3

4

56 a

g

c

f

e

b

d

{3, 6} is a vertex cover

Let U = {a, b, c, d , e, f , g},
k = 2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d , e} S4 = {e, f }
S5 = {a} S6 = {a, b, f , g}

{S3, S6} is a set cover
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Proving Reductions

To prove that X ≤P Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y .
2 Satisfies the property that answer to IX is YES iff IY is YES.

1 typical easy direction to prove: answer to IY is YES if answer to
IX is YES

2 typical difficult direction to prove: answer to IX is YES if
answer to IY is YES (equivalently answer to IY is NO if answer
to IX is NO).

3 Runs in polynomial time.
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Example of incorrect reduction proof

Try proving Matching ≤P Bipartite Matching via following
reduction:

1 Given graph G = (V ,E) obtain a bipartite graph
G ′ = (V ′,E ′) as follows.

1 Let V1 = {u1 | u ∈ V} and V2 = {u2 | u ∈ V}. We set
V ′ = V1 ∪ V2 (that is, we make two copies of V )

2 E ′ =
{
u1v2

∣∣∣ u 6= v and uv ∈ E
}

2 Given G and integer k the reduction outputs G ′ and k .
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“Proof”

Claim
Reduction is a poly-time algorithm. If G has a matching of size k
then G ′ has a matching of size k .

Proof.
Exercise.

Claim
If G ′ has a matching of size k then G has a matching of size k .

Incorrect! Why? Vertex u ∈ V has two copies u1 and u2 in G ′. A
matching in G ′ may use both copies!
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Subset sum and Partition?
Problem: Subset Sum

Instance: S - set of positive
integers,t: - an integer number
(target).
Question: Is there a subset
X ⊆ S such that

∑
x∈X x =

t?

Problem: Partition

Instance: A set S of n
numbers.
Question: Is there a sub-
set T ⊆ S s.t.

∑
t∈T t =∑

s∈S\T s?

Assume that we can solve Subset Sum in polynomial time, then we
can solve Partition in polynomial time. This statement is

(A) True.

(B) Mostly true.

(C) False.

(D) Mostly false.
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II: Partition and subset sum?
Problem: Partition

Instance: A set S of n
numbers.
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Chandra and Michael (UIUC) cs473 36 Fall 2019 36 / 36


	Reductions
	Overview
	Definitions 

	Examples of Reductions
	Independent Set and Clique
	Independent Set and Vertex Cover
	Vertex Cover and Set Cover


