cs 473: Algorithms: Lecture 14

logistics:
- part 8 due w/10
- rec 3 flw/edge
- rec 4 flw path
- rec 5 algo

today:
- flow algo

def: A **single-source/sink network** is a directed graph \(G = (V, E) \)

- **source:** \(s \in V \)
- **sink:** \(t \in V \)
- **capacity constraint:** \(c : E \rightarrow \mathbb{R}_{\geq 0} \)
- **flow constraint:** \(f : E \rightarrow \mathbb{R}_{\geq 0} \)

An **(s,t)-flow** is \(f : E \rightarrow \mathbb{R}_{\geq 0} \).

capacity constraint: \(V \in \mathbb{R}_{\geq 0} \)

flow conservation constraint:

\[
\begin{align*}
\forall v \in V \setminus \{s, t\}, \quad f(v) &= \sum_{e : u \rightarrow v} f^+(e) - \sum_{e : v \rightarrow u} f^-(e) \\
\end{align*}
\]

\(f(s) = 0 \quad f(t) = |f| \leq c(e) \)

lem:
- given network, find max flow

def: a **network** \(G = (V, E) \), \(s \neq t \in V \), \(c : E \rightarrow \mathbb{R}_{\geq 0} \)

An **(s,t)-cut** is a partition \(V = S \cup T \) \(s \in S \), \(t \notin T \)

The **capacity of the cut** is \(|C| = c(S, T) = \sum_{e : s \rightarrow t} c(e) \)

ques:
- given network find min capacity cut.

prop:
- \((s,t) \) then, \(c(S, T) = |f| \leq |C| \)

then:
- \(f \) is a max flow.

note: flows and cuts are dual objects: \(c \)-min flow = \(c \)-max cut

lem:
- network \(G \) has no bidirected edges

sketch:
- show that \(f \) is a **value preserving bijection** of \(|C| \) and \(|C| \)

ques:
- what algorithmic paradigms to use?

- divide and conquer?
- dynamic programming?
- randomized algo?

is ready?

Max flow = 2C

An edge (u,v) is selected only if at least one of the following conditions is met:
- For forward edges: there exists a flow path from s to v with capacity at least f(u,v) + p(p)
- For backward edges: there exists a flow path from v to s with capacity at least f(u,v) - p(p)

The residual network Gf = (V, Ef) is obtained from G by removing all edges with capacity 0.

An augmenting path is a (simple) s-t path p in Gf.

The capacity of p is defined as c(p) = \min \{ c(e) | e \in p \}

A flow f is increased by p if p is an augmenting path in Gf.

If p is a simple s-t path, assign flow p to each edge in p.

The value of the flow f is increased by \sum \{ p(e) | e \in p \}.

A flow f is maximum if there is no augmenting path in G.

key: 2 - G has no bidirectional edge, but G has no parallel edge.

- G has no edge = G has no edge.

Def: An augmenting path is a (simple) s-t path p in Gf.

It's capacity is |p| = \min_{e \in p} c(e).

Lemma: If p is an augmenting path in Gf, then f+p is a flow.

We value |f+p| = |f| + |p|.

If p is a path from s to t that satisfies the capacity constraints, we assign flow p to each edge in p.

\text{capacity constraints:}
- (u,v) \in E: c(u,v) \geq f(u,v) + p(p)
- (v,u) \in E: c(v,u) \geq f(u,v) - p(p)

For any simple s-t path p in Gf, we have:
- 0 \leq f(u,v) - p(p) \leq c(u,v)
- 0 \leq f(u,v) + p(p) \leq c(u,v)

Conservative: p is simple s-t path, hence v \notin S, but p enters v and p goes in the

hence, \forall s,v \in V \setminus \{s,t\},

\text{value} = \text{value increase by } p(p)

(f+p)^{\text{out}}(s) = f^{\text{out}}(s) + |p|

(f+p)^{\text{in}}(s) = f^{\text{in}}(s)
Algorithm (Ford, Fulkerson 1956):

Network \(G = (V, E) \), \(s \neq t \in V \), capacities \(c \)

Input: \(s \leq t \in E \)

Initialize: \(G_f \) by augmenting

While simple \(s \)-\(t \) path \(p \) in \(G_f \)

Compute \(l = \min_{e \in p} c_e \)

\(f' = f + p \leq O(n) \) shallow/successive

\(G_f = G_f - p \leq O(n) \) edge to update

Return \(f \)

\[\text{Q: } \text{Bipartite?} \]

\[\text{Q: } \text{Is } f \text{ a minimum?} \]

\[\text{Q: } \text{Is } G_f \text{ valid?} \]

\[\text{Q: } \text{Is } f \text{ a feasible flow?} \]

\[\text{Q: } \text{Is } f \text{ a maximum flow?} \]

\[\text{Q: } \text{What does a terminal "look like"?} \]

\[\text{Q: } \text{Is } f \text{ a flow of max value?} \]

\[\text{Q: } \text{Does a cut exist?} \]

\(f \) is flow of max value if \(S \cup \{s\} \) is a cut.
\[\text{no } S \to T \text{ path in } G \Rightarrow \text{no edges } S \to T \text{ in } G \]

\[\Rightarrow \begin{cases} f(u,v) = c(u,v) & (u,v) \in E \\ f(u,v) = 0 & (u,v) \notin E \end{cases} \]

\[\text{Lemma: } |f| = \sum_{u \in S, v \in T} f(u,v) - \sum_{u \in S, v \in T} f(v,u) \]

\[= c(S,T) = 0 \]

\[\text{Corollary: } c(S,T) = c(S,v) \]

\[\text{Proof: } S = \{ u \in V : \text{exists } u \to v \text{ in } G \} \]

\[\text{with } G \text{ of integral capacities } \Rightarrow \max |f| = \text{max } c(S,v) \]

\[\text{max flow = min cut still holds } \]

\[\text{Ford-Fulkerson actually run in } O(m \log C) \text{ time.} \]

\[\text{In } O(m C) \text{ time, } \max \text{flow value } \]

\[\sum_{e \in E} c(e) \leq c(S,v) \]

\[\text{Given } C(e) \text{ in binary representation, } \]

\[\text{but input size is } O(m \log C) \]

\[\text{hence: FF run 'poly time' else if } C \text{ is large!} \]

\[\text{FF can achieve } (1/2) \text{ iteration, e.g. } \]

\[\text{Q: polynomial time also? } \]

\[\text{Lemma: } \text{pres-S edge WID} \]

\[\text{today: Ford-Fulkerson} \]

\[\text{next: max flow algo} \]

\[\text{application of max flow} \]