Entropy, Randomness, and Information

Lecture 26
December 3, 2018
26.1: Entropy
“If only once - only once - no matter where, no matter before what audience - I could better the record of the great Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had truly accomplished something for my country. But I am not getting any younger, and although I am still at the peak of my powers there are moments - why deny it? - when I begin to doubt - and there is a time limit on all of us.”

Entropy: Definition

Definition

The \textit{entropy} in bits of a discrete random variable \(X \) is

\[H(X) = - \sum_x \Pr[X = x] \lg \Pr[X = x]. \]

Equivalently, \(H(X) = \mathbb{E} \left[\lg \frac{1}{\Pr[X]} \right] \).
Entropy
Clicker question

Consider X a random variable that picks its value uniformly from $1, \ldots, n$. We have that its entropy $\mathbb{H}(X) = - \sum_x \Pr[X = x] \log \Pr[X = x]$ is

1. $O(\log n)$.
2. $O(n)$.
3. $\ln n$.
4. $n \times \ln n$.
5. $\lg n$.
Entropy intuition...

Intuition...
\(\mathbb{H}(X) \) is the number of \textit{fair} coin flips that one gets when getting the value of \(X \).

Interpretation from last lecture...
Consider a (huge) string \(S = s_1s_2 \ldots s_n \) formed by picking characters independently according to \(X \). Then

\[
|S| \mathbb{H}(X) = n \mathbb{H}(X)
\]

is the minimum number of bits one needs to store the string \(S \) (when we compress it).
Entropy II

Clicker question

Consider X a random variable that

$$\Pr[X = i] = \frac{1/i}{\alpha},$$

for $i = 1, \ldots, \infty$, where $\alpha = \sum_{i=1}^{\infty} 1/i$.

The entropy of X is

$$\mathbb{H}(X) = -\sum_x \Pr[X = x] \lg \Pr[X = x]$$

equal to

1. $O(1)$.
2. $O(n)$.
3. 0.
4. ∞.

Consider X a random variable that

$$\Pr[X = i] = \frac{1/i^2}{\alpha},$$

for $i = 2, \ldots, \infty$, where $\alpha = \sum_{i=2}^{\infty} 1/i^2$. The entropy of X is

$$\mathbb{H}(X) = - \sum_x \Pr[X = x] \log \Pr[X = x]$$

equal to

1. $O(1)$.
2. $O(n)$.
3. 0.
4. ∞.
Entropy V

Clicker question

Consider X a random variable that

$$\Pr[X = i] = 2^{-i}$$

for $i = 1, \ldots, \infty$. The entropy of X is

$$\mathbb{H}(X) = - \sum_x \Pr[X = x] \lg \Pr[X = x]$$

equal to

1. $O(1)$.
2. $O(n)$.
3. 0.
4. ∞.
5. $\lg n$.
Entropy of a geometric distribution...

\[H(X) = - \sum_x \Pr(X = x) \lg \Pr(X = x) \]

\[= - \sum_{i=1}^{\infty} \frac{1}{2^i} \lg \frac{1}{2^i} \]

\[= \sum_{i=1}^{\infty} \frac{1}{2^i} \lg 2^i \]

\[= \sum_{i=1}^{\infty} \frac{i}{2^i} \]

\[= 2. \]
Entropy of a geometric distribution...

\[\mathbb{H}(X) = - \sum_{x} \Pr[X = x] \log \Pr[X = x] \]

\[= - \sum_{i=1}^{\infty} \frac{1}{2^i} \log \frac{1}{2^i} \]

\[= \sum_{i=1}^{\infty} \frac{1}{2^i} \log 2^i \]

\[= \sum_{i=1}^{\infty} \frac{i}{2^i} \]

\[= 2. \]
Entropy of a geometric distribution...

\[H(X) = - \sum_{x} \Pr[X = x] \log \Pr[X = x] \]

\[= - \sum_{i=1}^{\infty} \frac{1}{2^i} \log \frac{1}{2^i} \]

\[= \sum_{i=1}^{\infty} \frac{1}{2^i} \log 2^i \]

\[= \sum_{i=1}^{\infty} \frac{i}{2^i} \]

\[= 2. \]
Entropy of a geometric distribution...

\[H(X) = - \sum_{x} \Pr[X = x] \log \Pr[X = x] \]

\[= - \sum_{i=1}^{\infty} \frac{1}{2^i} \log \frac{1}{2^i} \]

\[= \sum_{i=1}^{\infty} \frac{i}{2^i} \log 2^i \]

\[= 2. \]
Entropy of a geometric distribution...

\[H(X) = - \sum_x \Pr[X = x] \, \lg \Pr[X = x] \]

\[= - \sum_{i=1}^{\infty} \frac{1}{2^i} \, \lg \frac{1}{2^i} \]

\[= \sum_{i=1}^{\infty} \frac{i}{2^i} \, \lg 2^i \]

\[= \sum_{i=1}^{\infty} \frac{i}{2^i} \]

\[= 2. \]
Binary entropy

\[H(X) = - \sum_x \Pr[X = x] \log \Pr[X = x] \]

Definition

The binary entropy function \(H(p) \) for a random binary variable that is \(1 \) with probability \(p \), is

\[H(p) = -p \log p - (1 - p) \log(1 - p). \]

We define \(H(0) = H(1) = 0 \).

Q: How many truly random bits are there when given the result of flipping a single coin with probability \(p \) for heads?
Binary entropy

\[H(X) = - \sum_x \Pr[X = x] \log \Pr[X = x] \]

Definition

The *binary entropy* function \(H(p) \) for a random binary variable that is 1 with probability \(p \), is

\[H(p) = -p \log p - (1 - p) \log(1 - p) \]

We define \(H(0) = H(1) = 0 \).

Q: How many truly random bits are there when given the result of flipping a single coin with probability \(p \) for heads?
Binary entropy

\[H(X) = - \sum_x \Pr[X = x] \log \Pr[X = x] \]

\[\Rightarrow \]

Definition

The \textit{binary entropy} function \(H(p) \) for a random binary variable that is 1 with probability \(p \), is

\[H(p) = -p \log p - (1-p) \log(1-p). \]

We define \(H(0) = H(1) = 0 \).

Q: How many truly random bits are there when given the result of flipping a single coin with probability \(p \) for heads?
Binary entropy:
\[H(p) = -p \log_2 p - (1 - p) \log_2(1 - p) \]

1. \(H(p) \) is a concave symmetric around \(1/2 \) on the interval \([0, 1]\).
2. maximum at \(1/2 \).
3. \(H(3/4) \approx 0.8113 \) and \(H(7/8) \approx 0.5436 \).
4. \(\implies \) coin that has \(3/4 \) probably to be heads have higher amount of “randomness” in it than a coin
Binary entropy:

\[\mathbb{H}(p) = -p \log_2 p - (1 - p) \log_2 (1 - p) \]

1. \(\mathbb{H}(p) \) is a concave symmetric around \(1/2 \) on the interval \([0, 1]\).
2. maximum at \(1/2 \).
3. \(\mathbb{H}(3/4) \approx 0.8113 \) and \(\mathbb{H}(7/8) \approx 0.5436 \).
4. coin that has \(3/4 \) probably to be heads have higher amount of “randomness” in it than a coin.
Binary entropy:

$$H(p) = -p \lg p - (1-p) \lg(1-p)$$

1. $H(p)$ is a concave symmetric around $1/2$ on the interval $[0, 1]$.
2. maximum at $1/2$.
3. $H(3/4) \approx 0.8113$ and $H(7/8) \approx 0.5436$.
4. coin that has $3/4$ probably to be heads have higher amount of “randomness” in it than a coin
Binary entropy:
\[H(p) = -p \log p - (1 - p) \log(1 - p) \]

1. \(H(p) \) is a concave symmetric around \(1/2 \) on the interval \([0, 1]\).
2. maximum at \(1/2 \).
3. \(H(3/4) \approx 0.8113 \) and \(H(7/8) \approx 0.5436 \).
4. \(\implies \) coin that has \(3/4 \) probably to be heads have higher amount of “randomness” in it than a coin.
And now for some unnecessary math

1. \(H(p) = -p \log p - (1 - p) \log(1 - p) \)
2. \(H'(p) = -\log p + \log(1 - p) = \log \frac{1-p}{p} \)
3. \(H''(p) = \frac{p}{1-p} \cdot \left(-\frac{1}{p^2} \right) = -\frac{1}{p(1-p)} \).
4. \(\Rightarrow H''(p) \leq 0 \), for all \(p \in (0, 1) \), and the \(H(\cdot) \) is concave.
5. \(H'(1/2) = 0 \Rightarrow H(1/2) = 1 \max \) of binary entropy.
6. \(\Rightarrow \) balanced coin has the largest amount of randomness in it.
And now for some unnecessary math

1. $\mathbb{H}(p) = -p \lg p - (1 - p) \lg(1 - p)$

2. $\mathbb{H}'(p) = -\lg p + \lg(1 - p) = \lg \frac{1-p}{p}$

3. $\mathbb{H}''(p) = \frac{p}{1-p} \cdot \left(-\frac{1}{p^2} \right) = -\frac{1}{p(1-p)}$.

4. $\implies \mathbb{H}''(p) \leq 0$, for all $p \in (0, 1)$, and the $\mathbb{H}(\cdot)$ is concave.

5. $\mathbb{H}'(1/2) = 0 \implies \mathbb{H}(1/2) = 1$ max of binary entropy.

6. \implies balanced coin has the largest amount of randomness in it.
And now for some unnecessary math

1. \(H(p) = -p \log p - (1 - p) \log (1 - p) \)
2. \(H'(p) = - \log p + \log (1 - p) = \log \frac{1-p}{p} \)
3. \(H''(p) = \frac{p}{1-p} \cdot \left(-\frac{1}{p^2}\right) = -\frac{1}{p(1-p)} \).
4. \(\Rightarrow H''(p) \leq 0 \), for all \(p \in (0, 1) \), and the \(H(\cdot) \) is concave.
5. \(H'(1/2) = 0 \Rightarrow H(1/2) = 1 \) max of binary entropy.
6. \(\Rightarrow \) balanced coin has the largest amount of randomness in it.
And now for some unnecessary math

1. $$\mathbb{H}(p) = -p \log p - (1 - p) \log(1 - p)$$
2. $$\mathbb{H}'(p) = -\log p + \log(1 - p) = \log \frac{1-p}{p}$$
3. $$\mathbb{H}''(p) = \frac{p}{1-p} \cdot \left(-\frac{1}{p^2}\right) = -\frac{1}{p(1-p)}.$$
4. $$\implies \mathbb{H}''(p) \leq 0,$$ for all $$p \in (0, 1),$$ and the $$\mathbb{H}(\cdot)$$ is concave.
5. $$\mathbb{H}'(1/2) = 0 \implies \mathbb{H}(1/2) = 1$$ max of binary entropy.
6. $$\implies$$ balanced coin has the largest amount of randomness in it.
And now for some unnecessary math

1. \(H(p) = -p \log p - (1 - p) \log(1 - p) \)

2. \(H'(p) = -\log p + \log(1 - p) = \log \frac{1-p}{p} \)

3. \(H''(p) = \frac{p}{1-p} \cdot \left(-\frac{1}{p^2}\right) = -\frac{1}{p(1-p)} \).

4. \(\implies H''(p) \leq 0 \), for all \(p \in (0, 1) \), and the \(H(\cdot) \) is concave.

5. \(H'(1/2) = 0 \implies H(1/2) = 1 \) max of binary entropy.

6. \(\implies \) balanced coin has the largest amount of randomness in it.
And now for some unnecessary math

1. $H(p) = -p \log p - (1 - p) \log(1 - p)$
2. $H'(p) = - \log p + \log(1 - p) = \log \frac{1 - p}{p}$
3. $H''(p) = \frac{p}{1 - p} \cdot \left(- \frac{1}{p^2} \right) = - \frac{1}{p(1 - p)}$
4. $\implies H''(p) \leq 0$, for all $p \in (0, 1)$, and the $H(\cdot)$ is concave.
5. $H'(1/2) = 0 \implies H(1/2) = 1$ max of binary entropy.
6. \implies balanced coin has the largest amount of randomness in it.
26.3: Squeezing randomness
Task at hand: Squeezing good random bits...
...out of bad random bits...

1. \(b_1, \ldots, b_n \): result of \(n \) coin flips...
2. From a faulty coin!
3. \(p \): probability for head.
4. We need fair bit coins!
5. Convert \(b_1, \ldots, b_n \rightarrow b'_1, \ldots, b'_m \).
6. New bits must be truly random: Probability for head is \(1/2 \).
7. Q: How many truly random bits can we extract?
Task at hand: Squeezing good random bits...

...out of bad random bits...

1. \(b_1, \ldots, b_n \): result of \(n \) coin flips...
2. From a faulty coin!
3. \(p \): probability for head.
4. We need fair bit coins!
5. Convert \(b_1, \ldots, b_n \rightarrow b'_1, \ldots, b'_m \).
6. New bits must be truly random: Probability for head is \(1/2 \).
7. \(Q \): How many truly random bits can we extract?
Task at hand: Squeezing good random bits...

...out of bad random bits...

1. b_1, \ldots, b_n: result of n coin flips...
2. From a faulty coin!
3. p: probability for head.
4. We need fair bit coins!
5. Convert $b_1, \ldots, b_n \implies b'_1, \ldots, b'_m$.
6. New bits must be truly random: Probability for head is $1/2$.
7. Q: How many truly random bits can we extract?
Task at hand: Squeezing good random bits...
...out of bad random bits...

1. \(b_1, \ldots, b_n \): result of \(n \) coin flips...
2. From a faulty coin!
3. \(p \): probability for head.
4. We need fair bit coins!
5. Convert \(b_1, \ldots, b_n \Rightarrow b'_1, \ldots, b'_m \).
6. New bits must be truly random: Probability for head is \(1/2 \).
7. Q: How many truly random bits can we extract?
Task at hand: Squeezing good random bits...

...out of bad random bits...

1. \(b_1, \ldots, b_n\): result of \(n\) coin flips...
2. From a faulty coin!
3. \(p\): probability for head.
4. We need fair bit coins!
5. Convert \(b_1, \ldots, b_n \implies b'_1, \ldots, b'_m\).
6. New bits must be truly random: Probability for head is \(1/2\).
7. Q: How many truly random bits can we extract?
Task at hand: Squeezing good random bits...
...out of bad random bits...

1. b_1, \ldots, b_n: result of n coin flips...
2. From a faulty coin!
3. p: probability for head.
4. We need fair bit coins!
5. Convert $b_1, \ldots, b_n \implies b'_1, \ldots, b'_m$.
6. **New bits must be truly random**: Probability for head is $1/2$.
7. **Q**: How many truly random bits can we extract?
Task at hand: Squeezing good random bits...
...out of bad random bits...

1. b_1, \ldots, b_n: result of n coin flips...
2. From a faulty coin!
3. p: probability for head.
4. We need fair bit coins!
5. Convert $b_1, \ldots, b_n \implies b'_1, \ldots, b'_m$.
6. **New bits must be truly random**: Probability for head is $1/2$.
7. **Q**: How many truly random bits can we extract?
Intuitively...
Squeezing good random bits out of bad random bits...

Question...
Given the result of n coin flips: b_1, \ldots, b_n from a faulty coin, with head with probability p, how many truly random bits can we extract?

If believe intuition about entropy, then this number should be $\approx n \mathbb{H}(p)$.
Back to Entropy

1. **entropy** of X is
 \[
 H(X) = - \sum_x \Pr[X = x] \log \Pr[X = x].
 \]

2. Entropy of uniform variable.

Example

A random variable X that has probability $1/n$ to be i, for $i = 1, \ldots, n$, has entropy

\[
H(X) = - \sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = \log n.
\]

3. Entropy is oblivious to the exact values random variable can have.

4. Random variables over $-1, +1$ with equal probability has the same entropy (i.e., 1) as a fair coin.
Back to Entropy

1. **Entropy** of X is
 \[H(X) = - \sum_x \Pr[X = x] \log \Pr[X = x]. \]

2. Entropy of uniform variable.

Example

A random variable X that has probability $1/n$ to be i, for $i = 1, \ldots, n$, has entropy
\[H(X) = - \sum_{i=1}^n \frac{1}{n} \log \frac{1}{n} = \log n. \]

3. Entropy is oblivious to the exact values random variable can have.

4. Random variables over $-1, +1$ with equal probability has the same entropy (i.e., 1) as a fair coin.
Back to Entropy

1. **entropy** of X is
 \[H(X) = - \sum_x \Pr[X = x] \lg \Pr[X = x]. \]

2. Entropy of uniform variable.

Example

A random variable X that has probability $1/n$ to be i, for $i = 1, \ldots, n$, has entropy
\[H(X) = - \sum_{i=1}^n \frac{1}{n} \lg \frac{1}{n} = \lg n. \]

3. Entropy is oblivious to the exact values random variable can have.

4. Random variables over $-1, +1$ with equal probability has the same entropy (i.e., 1) as a fair coin.
Back to Entropy

1. **entropy** of X is
 \[H(X) = - \sum_x \Pr[X = x] \log \Pr[X = x]. \]

2. Entropy of uniform variable.

Example

A random variable X that has probability $1/n$ to be i, for $i = 1, \ldots, n$, has entropy
\[H(X) = - \sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = \log n. \]

3. Entropy is oblivious to the exact values random variable can have.

4. Random variables over $-1, +1$ with equal probability has the same entropy (i.e., 1) as a fair coin.
Back to Entropy

1. **entropy** of X is

 \[H(X) = - \sum_x \Pr[X = x] \log \Pr[X = x]. \]

2. Entropy of uniform variable.

Example

A random variable X that has probability $1/n$ to be i, for $i = 1, \ldots, n$, has entropy

\[H(X) = - \sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = \log n. \]

3. Entropy is oblivious to the exact values random variable can have.

4. \(\implies\) random variables over \(-1, +1\) with equal probability has the same entropy (i.e., 1) as a fair coin.
Flipper
Clicker question

You are given a coin that is head with probability p, and tail with probability $q = 1 - p$. We flip it three times, and get the string $S = s_1 s_2 s_3$. We have the following:

1. $\Pr[S = 001] = \Pr[S = 011] = pq^2$.
2. $\Pr[S = 101] = \Pr[S = 110] = \Pr[S = 011] = pq^2$.
3. $\Pr[S = 111] = \Pr[S = 000] = q^3$.
4. $\Pr[S = 001] = \Pr[S = 010] = \Pr[S = 100] = pq^2$.
5. $\Pr[S = 000] + \Pr[S = 111] = (p + q)^3$.
Lemma: Entropy additive for independent variables

Lemma

Let X and Y be two independent random variables, and let Z be the random variable (X, Y). Then

$$H(Z) = H(X) + H(Y).$$
Proof

In the following, summation are over all possible values that the variables can have. By the independence of X and Y we have

$$\mathbb{H}(Z) = \sum_{x,y} \Pr[(X, Y) = (x, y)] \lg \frac{1}{\Pr[(X, Y) = (x, y)]}$$

$$= \sum_{x,y} \Pr[X = x] \Pr[Y = y] \lg \frac{1}{\Pr[X = x] \Pr[Y = y]}$$

$$= \sum_{x} \sum_{y} \Pr[X = x] \Pr[Y = y] \lg \frac{1}{\Pr[X = x]}$$

$$+ \sum_{y} \sum_{x} \Pr[X = x] \Pr[Y = y] \lg \frac{1}{\Pr[Y = y]}$$
Proof continued

\[\mathbb{H}(Z) = \sum_x \sum_y \Pr[X = x] \Pr[Y = y] \log \frac{1}{\Pr[X = x]} \]

\[+ \sum_y \sum_x \Pr[X = x] \Pr[Y = y] \log \frac{1}{\Pr[Y = y]} \]

\[= \sum_x \Pr[X = x] \log \frac{1}{\Pr[X = x]} \]

\[+ \sum_y \Pr[Y = y] \log \frac{1}{\Pr[Y = y]} \]

\[= \mathbb{H}(X) + \mathbb{H}(Y). \]
The entropy of \(Y \)...

Clicker question

Consider a binary string \(Y \) generated by flipping a coin \(n \) times, where the probability for heads is \(p \). Then we have that

1. \(\mathbb{H}(Y) = \ln \left(\frac{n}{np} \right) \).
2. \(\mathbb{H}(Y) = np \).
3. \(\mathbb{H}(Y) = n \mathbb{H}(p) \).
4. \(\mathbb{H}(Y) = n - n \mathbb{H}(p) \).
5. \(\mathbb{H}(Y) = \mathbb{H}(np) \).
Bounding the binomial coefficient using entropy

Lemma

\(q \in [0, 1] \)

\(nq \) is integer in the range \([0, n]\).

Then

\[
\frac{2^{nH(q)}}{n + 1} \leq \binom{n}{nq} \leq 2^{nH(q)}.
\]
Proof

Holds if $q = 0$ or $q = 1$, so assume $0 < q < 1$. We have

\[
\binom{n}{nq} q^{nq} (1 - q)^{n - nq} \leq (q + (1 - q))^n = 1.
\]

We also have:

\[
q^{-nq} (1 - q)^{-(1-q)n} = 2^n \left(-q \lg q - (1-q) \lg(1-q) \right) = 2^n \mathbb{H}(q), \text{ we have}
\]

\[
\binom{n}{nq} \leq q^{-nq} (1 - q)^{-(1-q)n} = 2^n \mathbb{H}(q).
\]
Proof

Holds if $q = 0$ or $q = 1$, so assume $0 < q < 1$. We have

$$\binom{n}{nq} q^{nq} (1 - q)^{n-nq} \leq (q + (1 - q))^n = 1.$$

We also have:

$$q^{-nq} (1 - q)^{- (1-q)n} = 2^n \left(-q \log q - (1-q) \log(1-q)\right) = 2^n \mathbb{H}(q),$$

so

$$\binom{n}{nq} \leq q^{-nq} (1 - q)^{- (1-q)n} = 2^n \mathbb{H}(q).$$
Proof

Holds if $q = 0$ or $q = 1$, so assume $0 < q < 1$. We have

$$\binom{n}{nq} q^{nq} (1 - q)^{n - nq} \leq (q + (1 - q))^n = 1.$$

We also have: $q^{-nq} (1 - q)^{-(1-q)n} = 2^n \left(-q \log q - (1-q) \log(1-q)\right) = 2^n \mathcal{H}(q)$, we have

$$\binom{n}{nq} \leq q^{-nq} (1 - q)^{-(1-q)n} = 2^n \mathcal{H}(q).$$
Proof

Holds if $q = 0$ or $q = 1$, so assume $0 < q < 1$. We have

$$\binom{n}{nq} q^{nq} (1 - q)^{n - nq} \leq (q + (1 - q))^n = 1.$$

We also have:

$$q^{-nq} (1 - q)^{(1-q)n} = 2^n (-q \log q - (1-q) \log (1-q)) = 2^n H(q),$$

we have

$$\binom{n}{nq} \leq q^{-nq} (1 - q)^{(1-q)n} = 2^n H(q).$$
Proof continued

Other direction...

1. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \)

2. \(\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i). \)

3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq} \)

 largest term in \(\sum_{k=0}^{n} \mu(k) = 1. \)

4. \(\Delta_k = \mu(k) - \mu(k + 1) = \)

 \(\binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q} \right) , \)

5. sign of \(\Delta_k = \) size of last term...

6. \(\text{sign}(\Delta_k) = \text{sign} \left(1 - \frac{(n-k)q}{(k+1)(1-q)} \right) \)

 \(= \text{sign} \left(\frac{(k+1)(1-q)-(n-k)q}{(k+1)(1-q)} \right) . \)
Proof continued

Other direction...

1. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \)

2. \(\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i). \)

3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq} \) largest term in \(\sum_{k=0}^{n} \mu(k) = 1. \)

4. \(\Delta_k = \mu(k) - \mu(k+1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q} \right), \)

5. sign of \(\Delta_k \) = size of last term...

6. \(\text{sign}(\Delta_k) = \text{sign} \left(1 - \frac{(n-k)q}{(k+1)(1-q)} \right) \)
 \[= \text{sign} \left(\frac{(k+1)(1-q)-(n-k)q}{(k+1)(1-q)} \right). \]
Proof continued

Other direction...

1. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \)
2. \(\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i) \).
3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq}(1 - q)^{n-nq} \) largest term in \(\sum_{k=0}^{n} \mu(k) = 1 \).
4. \(\Delta_k = \mu(k) - \mu(k+1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q} \right) \),
5. sign of \(\Delta_k \) = size of last term...
6. sign(\(\Delta_k \)) = sign\(\left(1 - \frac{(n-k)q}{(k+1)(1-q)}\right)\)
 \[= \text{sign}\left(\frac{(k+1)(1-q) - (n-k)q}{(k+1)(1-q)}\right)\].
Proof continued

Other direction...

1. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \)
2. \(\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i) \).
3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq} \) largest term in \(\sum_{k=0}^{n} \mu(k) = 1 \).
4. \(\Delta_k = \mu(k) - \mu(k+1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q}\right) \),
5. sign of \(\Delta_k \) = size of last term...
6. \(\text{sign}(\Delta_k) = \text{sign}(1 - \frac{(n-k)q}{(k+1)(1-q)}) \)
 \(= \text{sign}\left(\frac{(k+1)(1-q)-(n-k)q}{(k+1)(1-q)}\right) \).
Proof continued

Other direction...

1. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \)
2. \(\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i) \).
3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq} \) largest term in \(\sum_{k=0}^{n} \mu(k) = 1 \).
4. \(\Delta_k = \mu(k) - \mu(k+1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q} \right) \),
5. sign of \(\Delta_k \) = size of last term...
6. \(\text{sign}(\Delta_k) = \text{sign} \left(1 - \frac{(n-k)q}{(k+1)(1-q)} \right) = \text{sign} \left(\frac{(k+1)(1-q)-(n-k)q}{(k+1)(1-q)} \right) \).
Proof continued

Other direction...

1. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \)

2. \(\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i) \).

3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq} \) largest term in \(\sum_{k=0}^{n} \mu(k) = 1 \).

4. \(\Delta_k = \mu(k) - \mu(k+1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q} \right) \),

5. sign of \(\Delta_k \) = size of last term...

6. \(\text{sign}(\Delta_k) = \text{sign} \left(1 - \frac{(n-k)q}{(k+1)(1-q)} \right) = \text{sign} \left(\frac{(k+1)(1-q) - (n-k)q}{(k+1)(1-q)} \right) \).
Proof continued

Other direction...

1. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \)

2. \[\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i). \]

3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq} \) largest term in \(\sum_{k=0}^{n} \mu(k) = 1. \)

4. \(\Delta_k = \mu(k) - \mu(k + 1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} q \frac{1}{1-q} \right), \)

5. sign of \(\Delta_k = \) size of last term...

6. \(\text{sign}(\Delta_k) = \text{sign} \left(1 - \frac{(n-k)q}{(k+1)(1-q)} \right) \)

\[= \text{sign} \left(\frac{(k+1)(1-q)-(n-k)q}{(k+1)(1-q)} \right). \]
Proof continued

1. \[(k + 1)(1 - q) - (n - k)q = \frac{k + 1 - kq - q - nq + kq}{k + 1 - q} = 1 + k - q - nq.\]

2. \[\Rightarrow \Delta_k \geq 0 \text{ when } k \geq nq + q - 1 \]
\[\Delta_k < 0 \text{ otherwise.}\]

3. \[\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k}\]

4. \[\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and} \]
\[\mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\]

5. \[\Rightarrow \mu(nq) \text{ is the largest term in} \]
\[\sum_{k=0}^{n} \mu(k) = 1.\]

6. \[\mu(nq) \text{ larger than the average in sum.}\]

7. \[\Rightarrow \binom{n}{k} q^k (1 - q)^{n-k} \geq \frac{1}{n+1}.\]

8. \[\Rightarrow \]
Proof continued

1. \((k + 1)(1 - q) - (n - k)q = (k + 1 - kq - q - nq + kq) = 1 + k - q - nq.\)

2. \(\iff \Delta_k \geq 0 \text{ when } k \geq nq + q - 1 \quad \Delta_k < 0 \text{ otherwise.}\)

3. \(\mu(k) = \binom{n}{k}q^k(1 - q)^{n-k}\)

4. \(\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and } \mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\)

5. \(\iff \mu(nq) \text{ is the largest term in } \sum_{k=0}^{n} \mu(k) = 1.\)

6. \(\mu(nq) \text{ larger than the average in sum.}\)

7. \(\iff \binom{n}{k}q^k(1 - q)^{n-k} \geq \frac{1}{n+1}.\)

8. \(\iff\)
Proof continued

1. \((k + 1)(1 - q) - (n - k)q = \)
 \[k + 1 - kq - q - nq + kq = 1 + k - q - nq. \]
2. \(\implies \Delta_k \geq 0 \text{ when } k \geq nq + q - 1 \)
 \(\Delta_k < 0 \text{ otherwise.} \)
3. \(\mu(k) = \binom{n}{k}q^k(1 - q)^{n-k} \)
4. \(\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and} \)
 \(\mu(k) \geq \mu(k + 1) \text{ for } k \geq nq. \)
5. \(\implies \mu(nq) \text{ is the largest term in} \)
 \[\sum_{k=0}^{n} \mu(k) = 1. \]
6. \(\mu(nq) \text{ larger than the average in sum.} \)
7. \(\implies \binom{n}{k}q^k(1 - q)^{n-k} \geq \frac{1}{n+1}. \)
8. \(\implies \)
1. \[(k + 1)(1 - q) - (n - k)q = k + 1 - kq - q - nq + kq = 1 + k - q - nq.\]

2. \[\iff \Delta_k \geq 0 \text{ when } k \geq nq + q - 1\]
 \[\Delta_k < 0 \text{ otherwise.}\]

3. \[\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k}\]

4. \[\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and}\]
 \[\mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\]

5. \[\iff \mu(nq) \text{ is the largest term in } \sum_{k=0}^{n} \mu(k) = 1.\]

6. \[\mu(nq) \text{ larger than the average in sum.}\]

7. \[\iff \binom{n}{k} q^k (1 - q)^{n-k} \geq \frac{1}{n+1}.\]
Proof continued

1. \((k + 1)(1 - q) - (n - k)q = k + 1 - kq - q - nq + kq = 1 + k - q - nq\).

2. \(\Rightarrow \Delta_k \geq 0\) when \(k \geq nq + q - 1\)
 \(\Delta_k < 0\) otherwise.

3. \(\mu(k) = \binom{n}{k}q^k(1 - q)^{n-k}\)

4. \(\mu(k) < \mu(k + 1)\), for \(k < nq\), and
 \(\mu(k) \geq \mu(k + 1)\) for \(k \geq nq\).

5. \(\Rightarrow \mu(nq)\) is the largest term in
 \(\sum_{k=0}^{n} \mu(k) = 1\).

6. \(\mu(nq)\) larger than the average in sum.

7. \(\Rightarrow \binom{n}{k}q^k(1 - q)^{n-k} \geq \frac{1}{n+1}\).

8. \(\Rightarrow \frac{n}{k} \frac{q^{k-1}}{1 - q} \frac{1}{n-k+1} \geq \frac{1}{n+1}\).
Proof continued

1. \((k + 1)(1 - q) - (n - k)q = k + 1 - kq - q - nq + kq = 1 + k - q - nq.\)
2. \(\implies \Delta_k \geq 0 \text{ when } k \geq nq + q - 1\)
\(\Delta_k < 0 \text{ otherwise.}\)
3. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k}\)
4. \(\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and}\)
\(\mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\)
5. \(\implies \mu(nq) \text{ is the largest term in } \sum_{k=0}^{n} \mu(k) = 1.\)
6. \(\mu(nq) \text{ larger than the average in sum.}\)
7. \(\implies \binom{n}{k} q^k (1 - q)^{n-k} \geq \frac{1}{n+1}.\)
Proof continued

1. \((k + 1)(1 - q) - (n - k)q = k + 1 - kq - q - nq + kq = 1 + k - q - nq.\)

2. \(\implies \Delta_k \geq 0\) when \(k \geq nq + q - 1\)
 \(\Delta_k < 0\) otherwise.

3. \(\mu(k) = \binom{n}{k}q^k(1 - q)^{n-k}\)

4. \(\mu(k) < \mu(k + 1)\), for \(k < nq\), and
 \(\mu(k) \geq \mu(k + 1)\) for \(k \geq nq\).

5. \(\implies \mu(nq)\) is the largest term in
 \(\sum_{k=0}^{n} \mu(k) = 1.\)

6. \(\mu(nq)\) larger than the average in sum.

7. \(\implies \binom{n}{k}q^k(1 - q)^{n-k} \geq \frac{1}{n+1}.\)
Proof continued

1. \((k + 1)(1 - q) - (n - k)q = k + 1 - kq - q - nq + kq = 1 + k - q - nq.\)

2. \(\implies \Delta_k \geq 0 \text{ when } k \geq nq + q - 1\)
 \(\Delta_k < 0 \text{ otherwise.}\)

3. \(\mu(k) = \binom{n}{k}q^k(1 - q)^{n-k}\)

4. \(\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and }\)
 \(\mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\)

5. \(\implies \mu(nq) \text{ is the largest term in }\)
 \(\sum_{k=0}^{n} \mu(k) = 1.\)

6. \(\mu(nq) \text{ larger than the average in sum.}\)

7. \(\implies \binom{n}{k}q^k(1 - q)^{n-k} \geq \frac{1}{n+1}.\)

8. \(\implies\)
Flipper revisited...

Clicker question

\(p \): coin returns head with this probability. \(q = 1 - p \).

Flip coin \(n \) times, let \(X \) be the resulting string. Assume \(np \) and \(nq \) are integer.

\(S_i \): set of all binary strings length \(n \) with \(i \) ones in them. Then:

1. \(\Pr[X \in S_i] \) is maximal for \(i = np \).
2. \(\forall s, s' \in S_i \), we have
 \[
 \Pr[X = s] = \Pr[X = s'] = \binom{n}{i} p^i q^{n-i}.
 \]
3. If \(X \in S_i \) then entropy of \(X \) is \(\lg \binom{n}{i} \).
4. \(H(X) = n \mathbb{H}(p) \)
5. All of the above.
Generalization...

Corollary

We have:

1. $q \in [0, 1/2] \Rightarrow \left(\left\lfloor \frac{n}{nq} \right\rfloor \right) \leq 2^{n \mathbb{H}(q)}$.
2. $q \in [1/2, 1] \Rightarrow \left(\left\lceil \frac{n}{nq} \right\rceil \right) \leq 2^{n \mathbb{H}(q)}$.
3. $q \in [1/2, 1] \Rightarrow \frac{2^{n \mathbb{H}(q)} \cdot n}{n+1} \leq \binom{n}{\left\lfloor nq \right\rfloor}$.
4. $q \in [0, 1/2] \Rightarrow \frac{2^{n \mathbb{H}(q)} \cdot n}{n+1} \leq \binom{n}{\left\lceil nq \right\rceil}$.

Proof is straightforward but tedious.
What we have...

1. Proved that \(\binom{n}{nq} \approx 2^n \mathbb{H}(q) \).
2. Estimate is loose.
3. Sanity check...

 3.1 A sequence of \(n \) bits generated by coin with probability \(q \) for head.

 3.2 By Chernoff inequality... roughly \(nq \) heads in this sequence.

 3.3 Generated sequence \(Y \) belongs to \(\binom{n}{nq} \approx 2^n \mathbb{H}(q) \) possible sequences.

 3.4 ...of similar probability.

 3.5 \(\implies \mathbb{H}(Y) = n \mathbb{H}(q) \approx \log \binom{n}{nq} \).
What we have...

1. Proved that $\binom{n}{nq} \approx 2^{n\mathbb{H}(q)}$.
2. Estimate is loose.
3. Sanity check...

3.1 A sequence of n bits generated by coin with probability q for head.
3.2 By Chernoff inequality... roughly nq heads in this sequence.
3.3 Generated sequence Y belongs to $\binom{n}{nq} \approx 2^{n\mathbb{H}(q)}$ possible sequences.
3.4 ...of similar probability.
3.5 $\implies \mathbb{H}(Y) = n\mathbb{H}(q) \approx \lg \binom{n}{nq}$.
What we have...

1. Proved that \(\binom{n}{nq} \approx 2^{n\mathbb{H}(q)} \).
2. Estimate is loose.
3. Sanity check...
 3.1 A sequence of \(n \) bits generated by coin with probability \(q \) for head.
 3.2 By Chernoff inequality... roughly \(nq \) heads in this sequence.
 3.3 Generated sequence \(Y \) belongs to \(\binom{n}{nq} \approx 2^{n\mathbb{H}(q)} \) possible sequences .
 3.4 ...of similar probability.
 3.5 \(\mathbb{H}(Y) = n\mathbb{H}(q) \approx \log \binom{n}{nq} \).
What we have...

1. Proved that $\binom{n}{nq} \approx 2^{n \mathbb{H}(q)}$.
2. Estimate is loose.
3. Sanity check...
 3.1 A sequence of n bits generated by coin with probability q for head.
 3.2 By Chernoff inequality... roughly nq heads in this sequence.
 3.3 Generated sequence Y belongs to $\binom{n}{nq} \approx 2^{n \mathbb{H}(q)}$ possible sequences.
 3.4 ...of similar probability.
 3.5 $\Rightarrow \mathbb{H}(Y) = n \mathbb{H}(q) \approx \lg \binom{n}{nq}$.
What we have...

1. Proved that \(\binom{n}{nq} \approx 2^{nH(q)} \).
2. Estimate is loose.
3. Sanity check...
 3.1 A sequence of \(n \) bits generated by coin with probability \(q \) for head.
 3.2 By Chernoff inequality... roughly \(nq \) heads in this sequence.
 3.3 Generated sequence \(Y \) belongs to \(\binom{n}{nq} \approx 2^{nH(q)} \) possible sequences .
 3.4 ...of similar probability.
 3.5 \(\implies H(Y) = nH(q) \approx \lg \binom{n}{nq} \).
Just one bit...

question
Given a coin C with:
p: Probability for head.
$q = 1 - p$: Probability for tail.
Q: How to get one true random bit, by flipping C.
Describe an algorithm!
Extracting randomness...

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a random variable.

Definition

An extraction function Ext takes as input the value of a random variable X and outputs a sequence of bits y, such that $\Pr[\text{Ext}(X) = y \mid |y| = k] = \frac{1}{2^k}$, whenever $\Pr[|y| = k] > 0$, where $|y|$ denotes the length of y.
Extracting randomness...

1. \(X \): uniform random integer variable out of \(0, \ldots, 7 \).
2. \(\text{Ext}(X) \): binary representation of \(x \).
3. Def. subtle: all extracted seqs of same len have same probability.
4. Another example of extraction scheme:
 4.1 \(X \): uniform random integer variable \(0, \ldots, 11 \).
 4.2 \(\text{Ext}(x) \): output the binary representation for \(x \) if \(0 \leq x \leq 7 \).
 4.3 If \(x \) is between 8 and 11?
 4.4 Idea... Output binary representation of \(x - 8 \) as a two bit number.
5. A valid extractor...
Extracting randomness...

1. **X**: uniform random integer variable out of $0, \ldots, 7$.
2. **$\text{Ext}(X)$**: binary representation of x.
3. Def. subtle: all extracted seqs of same len have same probability.
4. Another example of extraction scheme:
 4.1 **X**: uniform random integer variable $0, \ldots, 11$.
 4.2 **$\text{Ext}(x)$**: output the binary representation for x if $0 \leq x \leq 7$.
 4.3 If x is between 8 and 11?
 4.4 Idea... Output binary representation of $x - 8$ as a two bit number.
5. A valid extractor...

\[
\Pr[\text{Ext}(X) = 00 | \text{Ext}(X) = 2] = \frac{32}{35}.
\]
Extracting randomness...

1. \(X \): uniform random integer variable out of \(0, \ldots, 7 \).
2. \(\text{Ext}(X) \): binary representation of \(x \).
3. Def. subtle: all extracted seqs of same len have same probability.
4. Another example of extraction scheme:
 4.1 \(X \): uniform random integer variable \(0, \ldots, 11 \).
 4.2 \(\text{Ext}(x) \): output the binary representation for \(x \) if \(0 \leq x \leq 7 \).
 4.3 If \(x \) is between 8 and 11?
 4.4 Idea... Output binary representation of \(x - 8 \) as a two bit number.
5. A valid extractor...
Extracting randomness...

1. X: uniform random integer variable out of $0, \ldots, 7$.
2. $\text{Ext}(X)$: binary representation of x.
3. Def. subtle: all extracted seqs of same len have same probability.
4. Another example of extraction scheme:
 4.1 X: uniform random integer variable $0, \ldots, 11$.
 4.2 $\text{Ext}(x)$: output the binary representation for x if $0 \leq x \leq 7$.
 4.3 If x is between 8 and 11?
 4.4 Idea... Output binary representation of $x - 8$ as a two bit number.
5. A valid extractor...
 \[\Pr[\text{Ext}(X) = 00 \mid \text{Ext}(X) = 2] = \frac{32}{35} \]
Extracting randomness...

1. X: uniform random integer variable out of $0, \ldots, 7$.
2. $\text{Ext}(X)$: binary representation of x.
3. Def. subtle: all extracted seqs of same len have same probability.
4. Another example of extraction scheme:
 4.1 X: uniform random integer variable $0, \ldots, 11$.
 4.2 $\text{Ext}(x)$: output the binary representation for x if $0 \leq x \leq 7$.
 4.3 If x is between 8 and 11?
 4.4 Idea... Output binary representation of $x - 8$ as a two bit number.
5. A valid extractor...
Extracting randomness...

1. \(X \): uniform random integer variable out of \(0, \ldots, 7 \).
2. \(\text{Ext}(X) \): binary representation of \(x \).
3. Def. subtle: all extracted seqs of same len have same probability.
4. Another example of extraction scheme:
 4.1 \(X \): uniform random integer variable \(0, \ldots, 11 \).
 4.2 \(\text{Ext}(x) \): output the binary representation for \(x \) if \(0 \leq x \leq 7 \).
 4.3 If \(x \) is between \(8 \) and \(11 \)?
 4.4 Idea... Output binary representation of \(x - 8 \) as a two bit number.
5. A valid extractor...
Extracting randomness...

1. **X**: uniform random integer variable out of 0, . . . , 7.
2. **Ext(X)**: binary representation of **x**.
3. Def. subtle: all extracted seqs of same len have same probability.
4. Another example of extraction scheme:
 4.1 **X**: uniform random integer variable 0, . . . , 11.
 4.2 **Ext(x)**: output the binary representation for **x** if 0 ≤ **x** ≤ 7.
 4.3 If **x** is between 8 and 11?
 4.4 Idea... Output binary representation of **x** − 8 as a two bit number.

5. A valid extractor...
Extracting randomness...

1. X: uniform random integer variable out of $0, \ldots, 7$.
2. $\text{Ext}(X)$: binary representation of x.
3. Def. subtle: all extracted seqs of same len have same probability.
4. Another example of extraction scheme:
 4.1 X: uniform random integer variable $0, \ldots, 11$.
 4.2 $\text{Ext}(x)$: output the binary representation for x if $0 \leq x \leq 7$.
 4.3 If x is between 8 and 11?
 4.4 Idea... Output binary representation of $x - 8$ as a two bit number.
5. A valid extractor...
Technical lemma

The following is obvious, but we provide a proof anyway.

Lemma

Let x/y be a faction, such that $x/y < 1$. Then, for any i, we have $x/y < (x + i)/(y + i)$.

Proof.

We need to prove that $x(y + i) - (x + i)y < 0$. The left size is equal to $i(x - y)$, but since $y > x$ (as $x/y < 1$), this quantity is negative, as required. \square
A uniform variable extractor...

Theorem

1. \(X \): random variable chosen uniformly at random from \(\{0, \ldots, m - 1\} \).
2. Then there is an extraction function for \(X \):
 2.1 outputs on average at least
 \[\lfloor \log m \rfloor - 1 = \lfloor H(X) \rfloor - 1\]
 independent and unbiased bits.
A uniform variable extractor...

Theorem

1. \(X \): random variable chosen uniformly at random from \(\{0, \ldots, m - 1\} \).

2. Then there is an extraction function for \(X \):

 2.1 outputs on average at least

 \[
 \lfloor \lg m \rfloor - 1 = \lfloor H(X) \rfloor - 1
 \]

 independent and unbiased bits.
A uniform variable extractor...

Theorem

1. **X**: random variable chosen uniformly at random from $\{0, \ldots, m - 1\}$.

2. Then there is an extraction function for X:
 2.1 outputs on average at least

 $$\lceil \log m \rceil - 1 = \lfloor H(X) \rfloor - 1$$

 independent and unbiased bits.
Proof

1. \(m \): A sum of unique powers of 2, namely
 \(m = \sum_i a_i 2^i \), where \(a_i \in \{0, 1\} \).

2. Example:

3. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \):
 then falls into block \(2^2 \)...
 \(x \) relative location is 2. Output 2 written using two bits,
 Output: “10”.
Proof

1. \(m \): A sum of unique powers of 2, namely
 \[m = \sum_i a_i 2^i, \text{ where } a_i \in \{0, 1\}. \]

2. Example:

3. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \):
 then falls into block \(2^2 \)...
 \(x \) relative location is 2. Output 2 written using two bits.
Proof

1. \(m \): A sum of unique powers of 2, namely
 \[m = \sum_i a_i 2^i, \text{ where } a_i \in \{0, 1\}. \]

2. Example:

3. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \):
 then falls into block \(2^2 \)...
 relative location in 2: Output 2 written in 5.
Proof

1. m: A sum of unique powers of 2, namely $m = \sum_i a_i 2^i$, where $a_i \in \{0, 1\}$.

2. Example:

3. decomposed $\{0, \ldots, m - 1\}$ into disjoint union of blocks sizes are powers of 2.

4. If x is in block 2^k, output its relative location in the block in binary representation.

5. Example: $x = 10$: then falls into block 2^2... relative location in 2. Output: 010 written in 3.
Proof

1. \(m \): A sum of unique powers of 2, namely
 \[m = \sum_i a_i 2^i, \text{ where } a_i \in \{0, 1\}. \]

2. Example:

3. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \):
Proof

1. \(m \): A sum of unique powers of 2, namely \(m = \sum_i a_i 2^i \), where \(a_i \in \{0, 1\} \).

2. Example:

3. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \):
Proof

1. \(m \): A sum of unique powers of 2, namely
\[m = \sum_i a_i 2^i, \text{ where } a_i \in \{0, 1\}. \]

2. Example:

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\end{array}
\]

3. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \):
Proof

1. \(m \): A sum of unique powers of 2, namely
\[
m = \sum_{i} a_i 2^i,
\]
where \(a_i \in \{0, 1\} \).

2. Example:

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
11 & 12 & 13
\end{array}
\]

3. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \):

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
11 & 12 & 13
\end{array}
\]

Output: "10".
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits...
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lfloor \log(m - 2^k) \rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k + 2 + 2^u > \ldots \geq 2^{u+1} + 2^k \implies u > 0$.

Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits.
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lfloor \lg(m - 2^k) \rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k + 2 + 2^u > \ldots > 2^{u+1} + 2^k \ldots m > 0$.
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits...
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lfloor \lg(m - 2^k) \rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k + 2 + 2^u > m \implies 2^{u+1} + 2^k - m > 0$.

Proof continued

1. Valid extractor...
2. Theorem holds if \(m \) is a power of two. Only one block.
3. \(m \) not a power of \(2 \)...
4. \(X \) falls in block of size \(2^k \): then output \(k \) complete random bits...
 ... entropy is \(k \).
5. Let \(2^k < m < 2^{k+1} \) biggest block.
6. \(u = \lceil \lg(m - 2^k) \rceil < k \).
 There must be a block of size \(u \) in the decomposition of \(m \).
7. two blocks in decomposition of \(m \): sizes \(2^k \) and \(2^u \).
8. Largest two blocks...
9. \(2^k + 2 + 2^u > \ldots > 2^{u+1} + 2^k \Rightarrow u > 0 \).
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits..
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lfloor \lg(m - 2^k) \rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k + 2^u + 2^{u+1} + \ldots + 2^{u+1} + 2^{k-u} > m > 0$.
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits.
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lfloor \log (m - 2^k) \rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k \cdot 2 + 2^u > m \Rightarrow 2^u + 1 + 2^k \Rightarrow m > 0$.
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits.
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lfloor \log_2(m - 2^k) \rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. Two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k + 2 + 2^u > \cdots > 2^{u+1} + 2^k \Rightarrow m > 0$.
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits...
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lfloor \log(m - 2^k) \rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits...
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lfloor \log(m - 2^k) \rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits..
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lfloor \lg(m - 2^k) \rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k + 2 + 2^u > m \Rightarrow 2^u + 1 + 2^k \Rightarrow m > 0.$
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits..
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lceil \log(m - 2^k) \rceil < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k + 2 + 2^u > m \Rightarrow 2^{u+1} + 2^k - m > 0$.

Proof continued

1. By lemma, since $\frac{m-2^k}{m} < 1$:

$$\frac{m - 2^k}{m} \leq \frac{m - 2^k + (2^{u+1} + 2^k - m)}{m} + (2^{u+1} + 2^k - m) = \frac{2^{u+1}}{2^{u+1} + 2^k}.$$

2. By induction (assumed holds for all numbers smaller than m):

$$E[Y] \geq \frac{2^k}{m}k + \frac{m - 2^k}{m} \left(\left\lceil \lg(m - 2^k) \right\rceil - 1 \right)$$

$$= \frac{2^k}{m}k + \frac{m - 2^k}{m} \left(k - k + u - 1 \right) = 0.$$
Proof continued

1. By lemma, since \(\frac{m - 2^k}{m} < 1 \):

\[
\frac{m - 2^k}{m} \leq \frac{m - 2^k}{m} + \left(2^u + 1 + 2^k - m \right) = \frac{2^u + 1}{2^u + 1 + 2^k}.
\]

2. By induction (assumed holds for all numbers smaller than \(m \)):

\[
\mathbb{E}[Y] \geq 2^k \cdot k + \frac{m - 2^k}{m} \left(\left\lfloor \log_2(m - 2^k) \right\rfloor - 1 \right) \]

\[
= \frac{2^k}{m} k + \frac{m - 2^k}{m} (k - k + u - 1) = 0
\]
Proof continued

1. By lemma, since \(\frac{m - 2^k}{m} < 1\):

\[
\frac{m - 2^k}{m} \leq \frac{m - 2^k + (2^{u+1} + 2^k - m)}{m} + (2^{u+1} + 2^k - m) = \frac{2^{u+1}}{2^{u+1} + 2^k}.
\]

2. By induction (assumed holds for all numbers smaller than \(m\)):

\[
E[Y] \geq \frac{2^k}{m} k + \frac{m - 2^k}{m} \left(\left\lfloor \log_2(m - 2^k) \right\rfloor - 1 \right)
\]

\[
= \frac{2^k}{m} k + \frac{m - 2^k}{m} (k - k + u - 1)
\]

\[
= 0
\]
Proof continued

1. By lemma, since \(\frac{m-2^k}{m} < 1 \):

\[
\frac{m - 2^k}{m} \leq \frac{m - 2^k + (2^{u+1} + 2^k - m)}{m} + (2^{u+1} + 2^k - m) = \frac{2^{u+1}}{2^{u+1} + 2^k}.
\]

2. By induction (assumed holds for all numbers smaller than \(m \)):

\[
\mathbb{E}[Y] \geq \frac{2^k}{m} k + \frac{m - 2^k}{m} \left(\left\lfloor \log(m - 2^k) \right\rfloor - 1 \right) = 0
\]
Proof continued..

1. We have:

\[
E[Y] \geq k + \frac{m - 2^k}{m} (u - k - 1)
\]

\[
\geq k + \frac{2^{u+1}}{2^{u+1} + 2^k} (u - k - 1)
\]

\[
= k - \frac{2^{u+1}}{2^{u+1} + 2^k} (1 + k - u),
\]

since \(u - k - 1 \leq 0 \) as \(k > u \).

2. If \(u = k - 1 \), then \(E[Y] \geq k - \frac{1}{2} \cdot 2 = k - 1 \), as required.

3. If \(u = k - 2 \), then \(E[Y] \geq k - \frac{1}{3} \cdot 3 = k - 1 \).
Proof continued..

1. We have:

\[
E[Y] \geq k + \frac{m - 2^k}{m} (u - k - 1)
\geq k + \frac{2^{u+1}}{2^{u+1} + 2^k} (u - k - 1)
= k - \frac{2^{u+1}}{2^{u+1} + 2^k} (1 + k - u),
\]

since \(u - k - 1 \leq 0 \) as \(k > u \).

2. If \(u = k - 1 \), then \(E[Y] \geq k - \frac{1}{2} \cdot 2 = k - 1 \), as required.

3. If \(u = k - 2 \) then \(E[Y] \geq k - \frac{1}{3} \cdot 3 = k - 1 \).
Proof continued..

1. We have:

\[
E[Y] \geq k + \frac{m - 2^k}{m}(u - k - 1)
\]

\[
\geq k + \frac{2^{u+1}}{2^{u+1} + 2^k}(u - k - 1)
\]

\[
= k - \frac{2^{u+1}}{2^{u+1} + 2^k}(1 + k - u),
\]

since \(u - k - 1 \leq 0\) as \(k > u\).

2. If \(u = k - 1\), then \(E[Y] \geq k - \frac{1}{2} \cdot 2 = k - 1\), as required.

3. If \(u = k - 2\) then \(E[Y] \geq k - \frac{1}{3} \cdot 3 = k - 1\).
Proof continued..

1. We have:

\[\mathbb{E}[Y] \geq k + \frac{m - 2^k}{m} (u - k - 1) \]

\[\geq k + \frac{2^{u+1}}{2^{u+1} + 2^k} (u - k - 1) \]

\[= k - \frac{2^{u+1}}{2^{u+1} + 2^k} (1 + k - u), \]

since \(u - k - 1 \leq 0 \) as \(k > u \).

2. If \(u = k - 1 \), then \(\mathbb{E}[Y] \geq k - \frac{1}{2} \cdot 2 = k - 1 \), as required.

3. If \(u = k - 2 \) then \(\mathbb{E}[Y] \geq k - \frac{1}{3} \cdot 3 = k - 1 \).
Proof continued.....

1. \(E[Y] \geq k - \frac{2^{u+1}}{2^{u+1} + 2^k} (1 + k - u) \).
 And \(u - k - 1 \leq 0 \) as \(k > u \).

2. If \(u < k - 2 \) then

\[
E[Y] \geq k - \frac{2^{u+1}}{2^k} (1 + k - u)
\]

\[
= k - \frac{k - u + 1}{2^{k-u-1}}
\]

\[
= k - \frac{2 + (k - u - 1)}{2^{k-u-1}}
\]

\[
\geq k - 1,
\]

since \((2 + i)/2^i \leq 1\) for \(i \geq 2\).
Proof continued.....

1. \(\mathbb{E}[Y] \geq k - \frac{2^{u+1}}{2u+1+2^k}(1 + k - u). \)
 And \(u - k - 1 \leq 0 \) as \(k > u. \)

2. If \(u < k - 2 \) then

 \[
 \mathbb{E}[Y] \geq k - \frac{2^{u+1}}{2^k}(1 + k - u) \\
 = k - \frac{k - u + 1}{2^{k-u-1}} \\
 = k - \frac{2 + (k - u - 1)}{2^{k-u-1}} \\
 \geq k - 1,
 \]

 since \((2 + i)/2^i \leq 1\) for \(i \geq 2. \)