Chapter 21

Approximation Algorithms using Linear Programming

CS 473: Algorithms, Fall 2018
November 10, 2018

21.1 Weighted vertex cover

21.1.0.1 Weighted vertex cover

Weighted Vertex Cover problem \(G = (V, E) \).

Each vertex \(v \in V \): cost \(c_v \).

Compute a vertex cover of minimum cost.

(A) vertex cover: subset of vertices \(V \) so each edge is covered.

(B) \textbf{NP-Hard}

(C) ...unweighted \textbf{Vertex Cover} problem.

(D) ... write as an integer program (IP):

(E) \(\forall v \in V: x_v = 1 \iff v \text{ in the vertex cover.} \)

(F) \(\forall vu \in E: \text{covered.} \implies x_v \lor x_u \text{ true.} \implies x_v + x_u \geq 1. \)

(G) minimize total cost: \(\min \sum_{v \in V} x_v c_v. \)

21.1.1 Weighted vertex cover

21.1.1.1 State as IP \(\implies \) Relax \(\implies \) LP

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} c_v x_v, \\
\text{such that} & \quad x_v \in \{0, 1\} \quad \forall v \in V \\
& \quad x_v + x_u \geq 1 \quad \forall vu \in E.
\end{align*}
\]

(21.1)
(A) ... **NP-Hard.**
(B) relax the integer program.
(C) allow \(x_v \) get values \(\in [0, 1] \).
(D) \(x_v \in \{0, 1\} \) replaced by \(0 \leq x_v \leq 1 \). The resulting LP is

\[
\min \sum_{v \in V} c_v x_v, \\
\text{s.t. } 0 \leq x_v \quad \forall v \in V, \\
\quad x_v \leq 1 \quad \forall v \in V, \\
\quad x_v + x_u \geq 1 \quad \forall vu \in E.
\]

21.1.1.2 **Weighted vertex cover – rounding the LP**

(A) Optimal solution to this LP: \(\hat{x}_v \) value of var \(X_v \), \(\forall v \in V \).
(B) optimal value of LP solution is \(\hat{\alpha} = \sum_{v \in V} c_v \hat{x}_v \).
(C) optimal integer solution: \(x_v^I, \forall v \in V \) and \(\alpha^I \).
(D) **Any valid solution to IP is valid solution for LP!**
(E) \(\hat{\alpha} \leq \alpha^I \).

Integral solution not better than LP.
(F) Got fractional solution (i.e., values of \(\hat{x}_v \)).
(G) Fractional solution is better than the optimal cost.
(H) Q: How to turn fractional solution into a (valid!) integer solution?
(I) Using **rounding**.

21.1.1.3 **How to round?**

(A) consider vertex \(v \) and fractional value \(\hat{x}_v \).
(B) If \(\hat{x}_v = 1 \) then include in solution!
(C) If \(\hat{x}_v = 0 \) then do not include in solution.
(D) if \(\hat{x}_v = 0.9 \implies \text{LP considers } v \text{ as being } 0.9 \text{ useful.} \)
(E) The LP puts its money where its belief is...
(F) ...\(\hat{\alpha} \) value is a function of this “belief” generated by the LP.
(G) **Big idea:** Trust LP values as guidance to usefulness of vertices.
(H) Pick all vertices \(\geq \) threshold of usefulness according to LP.
(I) \(S = \{ v \mid \hat{x}_v \geq 1/2 \} \).
(J) **Claim:** \(S \) a valid vertex cover, and cost is low.
(K) Indeed, edge cover as: \(\forall vu \in E \text{ have } \hat{x}_v + \hat{x}_u \geq 1 \).
(L) \(\hat{x}_v, \hat{x}_u \in (0, 1) \implies \hat{x}_v \geq 1/2 \text{ or } \hat{x}_u \geq 1/2. \)

\(\implies v \in S \text{ or } u \in S \) (or both).
\(\implies S \) covers all the edges of \(G \).

21.1.1.4 **Cost of solution**

Cost of \(S \):

\[
c_S = \sum_{v \in S} c_v = \sum_{v \in S} 1 \cdot c_v \leq \sum_{v \in S} 2\hat{x}_v \cdot c_v \leq 2 \sum_{v \in V} \hat{x}_v c_v = 2\hat{\alpha} \leq 2\alpha^I,
\]

since \(\hat{x}_v \geq 1/2 \) as \(v \in S \).
\(\alpha^I \) is cost of the optimal solution \(\implies \)
Theorem 21.1.1. The \textit{Weighted Vertex Cover} problem can be 2-approximated by solving a single \textit{LP}. Assuming computing the \textit{LP} takes polynomial time, the resulting approximation algorithm takes polynomial time.

21.1.2 The lessons we can take away

21.1.2.1 Or not - boring, boring, boring.

(A) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
(B) Not aware of any other 2-approximation algorithm does not use \textit{LP}. (For the weighted case!)
(C) Solving a \textit{relaxation} of an optimization problem into a \textit{LP} provides us with insight.
(D) But... have to be creative in the rounding.

21.2 Revisiting Set Cover

21.2.0.1 Revisiting Set Cover

(A) Purpose: See new technique for an approximation algorithm.
(B) Not better than greedy algorithm already seen $O(\log n)$ approximation.

\textbf{Set Cover}

\textbf{Instance: } (S, \mathcal{F})
- S: set of n elements
- \mathcal{F}: family of subsets of S, s.t. $\bigcup_{X \in \mathcal{F}} X = S.$

\textbf{Question: } The set $\mathcal{X} \subseteq \mathcal{F}$ such that \mathcal{X} contains as few sets as possible, and \mathcal{X} covers S.

\textbf{21.2.0.2 Set Cover – IP & LP}

\begin{align*}
\min \quad & \alpha = \sum_{U \in \mathcal{F}} x_U, \\
\text{s.t.} \quad & x_U \in \{0, 1\} \quad \forall U \in \mathcal{F}, \\
& \sum_{U \in \mathcal{F}, s \in U} x_U \geq 1 \quad \forall s \in S.
\end{align*}

Next, we relax this IP into the following \textit{LP}.

\begin{align*}
\min \quad & \alpha = \sum_{U \in \mathcal{F}} x_U, \\
0 \leq & \quad x_U \leq 1 \quad \forall U \in \mathcal{F}, \\
\sum_{U \in \mathcal{F}, s \in U} & \quad x_U \geq 1 \quad \forall s \in S.
\end{align*}
21.2.0.3 Set Cover – IP & LP

(A) LP solution: \(\forall U \in \mathcal{F}, \hat{x}_U \), and \(\hat{\alpha} \).
(B) Opt IP solution: \(\forall U \in \mathcal{F}, x_U \), and \(\alpha' \).
(C) Use LP solution to guide in rounding process.
(D) If \(\hat{x}_U \) is close to 1 then pick \(U \) to cover.
(E) If \(\hat{x}_U \) close to 0 do not.
(F) Idea: Pick \(U \in \mathcal{F} \): randomly choose \(U \) with probability \(\hat{x}_U \).
(G) Resulting family of sets \(\mathcal{G} \).
(H) \(Z_S \): indicator variable. 1 if \(S \in \mathcal{G} \).
(I) Cost of \(\mathcal{G} \) is \(\sum_{S \in \mathcal{F}} Z_S \), and the expected cost is \(\mathbb{E}[\text{cost of } \mathcal{G}] = \mathbb{E}[\sum_{S \in \mathcal{F}} Z_S] = \sum_{S \in \mathcal{F}} \mathbb{E}[Z_S] = \sum_{S \in \mathcal{F}} \mathbb{E}[\sum_{U \in \mathcal{F}, s \in U} \hat{x}_U] = \sum_{S \in \mathcal{F}} \mathbb{E}[\sum_{U \in \mathcal{F}, s \in U} \hat{x}_U] = \alpha \leq \alpha' \).
(J) In expectation, \(\mathcal{G} \) is not too expensive.
(K) Bigus problemos: \(\mathcal{G} \) might fail to cover some element \(s \in S \).

21.2.0.4 Set Cover – Rounding continued

(A) Sol: Repeat rounding \(m = 10 \ceil{\lg n} = O(\log n) \) times.
(B) \(n = |S| \).
(C) \(\mathcal{G}_i \): random cover computed in \(i \)th iteration.
(D) \(\mathcal{H} = \cup_i \mathcal{G}_i \). Return \(\mathcal{H} \) as the required cover.

21.2.0.5 The set \(\mathcal{H} \) covers \(S \)

(A) For an element \(s \in S \), we have that
\[
\sum_{U \in \mathcal{F}, s \in U} \hat{x}_U \geq 1,
\]
(21.2)
(B) probability \(s \) not covered by \(\mathcal{G}_i \) (\(i \)th iteration set).
\[
\mathbb{P}[s \text{ not covered by } \mathcal{G}_i] = \mathbb{P}[\text{ no } U \in \mathcal{F}, \text{ s.t. } s \in U \text{ picked into } \mathcal{G}_i] = \prod_{U \in \mathcal{F}, s \in U} \mathbb{P}[U \text{ was not picked into } \mathcal{G}_i] = \prod_{U \in \mathcal{F}, s \in U} (1 - \hat{x}_U) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\hat{x}_U) = \exp\left(-\sum_{U \in \mathcal{F}, s \in U} \hat{x}_U\right) \leq \exp(-1) \leq \frac{1}{2}, \leq \frac{1}{2}
\]
(C) probability \(s \) is not covered in all \(m \) iterations \(\leq (\frac{1}{2})^m < \frac{1}{n^m} \),
(D) ...since \(m = O(\log n) \).
(E) probability one of \(n \) elements of \(S \) is not covered by \(\mathcal{H} \) is \(\leq n(1/n^{10}) = 1/n^9 \).

21.2.0.6 Cost of solution

(A) Have: \(\mathbb{E}[\text{cost of } \mathcal{G}_i] \leq \alpha' \).
(B) \(\implies \) Each iteration expected cost of cover \(\leq \) cost of optimal solution (i.e., \(\alpha' \)).
(C) Expected cost of the solution is
\[
c_{\mathcal{H}} \leq \sum_i c_{B_i} \leq m\alpha = O(\alpha' \log n).
\]
21.2.0.7 The result

Theorem 21.2.1. By solving an LP one can get an $O(\log n)$-approximation to set cover by a randomized algorithm. The algorithm succeeds with high probability.

21.2.0.8 Same algorithms works for...

Corollary 21.2.2. By solving an LP one can get an $O(\log n)$-approximation to set cover by a randomized algorithm. The algorithm also works for the weighted case.

$$\min \alpha = \sum_{U \in \mathcal{F}} w_U x_U$$

$$0 \leq x_U \leq 1 \quad \forall U \in \mathcal{F},$$

$$\sum_{U \in \mathcal{F}, s \in U} x_U \geq 1 \quad \forall s \in S.$$

Rounding algorithm as before...

21.2.1 Cost of solution (weighted case)...

21.2.1.1 Same same, not the same.

(A) Fractional LP solution. Target: $\hat{\alpha}$ \quad $\forall U \in \mathcal{F}$: $\hat{x}_U \in [0, 1]$.

(B) Integral opt solution. Target: α^I. \quad $\forall U \in \mathcal{F}$: $x_U^I \in \{0, 1\}$.

(C) $\alpha^I = \sum_{U \in \mathcal{F}} w_U x_U^I$.

(D) Rounding. $\forall U \in \mathcal{F}$: $\Pr[X_U = 1] = \hat{x}_U$.

(E) Have: $\mathbb{E}\left[\text{cost } S_i\right] = \sum_{U \in \mathcal{F}} \mathbb{E}[w_U X_U] = \sum_{U \in \mathcal{F}} w_U \hat{x}_U = \hat{\alpha} \leq \alpha^I$.

(F) \implies Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^I).

(G) Expected cost of the solution is

$$c_H \leq \sum_{i=1}^{O(\log n)} c_{B_i} \leq m\alpha^I = O(\alpha^I \log n).$$

21.3 Minimizing congestion

21.3.0.1 Minimizing congestion by example
21.3.0.2 Minimizing congestion

(A) G: graph. \(n \) vertices.
(B) \(\pi_{i}, \sigma_{i} \) paths with the same endpoints \(v_{i}, u_{i} \in V(G) \), for \(i = 1, \ldots, t \).
(C) Rule I: Send one unit of flow from \(v_{i} \) to \(u_{i} \).
(D) Rule II: Choose whether to use \(\pi_{i} \) or \(\sigma_{i} \).
(E) Target: No edge in \(G \) is being used too much.

Definition 21.3.1. Given a set \(X \) of paths in a graph \(G \), the congestion of \(X \) is the maximum number of paths in \(X \) that use the same edge.

21.3.0.3 Minimizing congestion

(A) \(\text{IP} \implies \text{LP} \):

\[
\begin{align*}
\min & \quad w \\
\text{s.t.} & \quad x_{i} \geq 0 & i = 1, \ldots, t, \\
& \quad x_{i} \leq 1 & i = 1, \ldots, t, \\
& \quad \sum_{e \in \pi_{i}} x_{i} + \sum_{e \in \sigma_{i}} (1 - x_{i}) \leq w & \forall e \in E.
\end{align*}
\]

(B) \(\hat{x}_{i} \): value of \(x_{i} \) in the optimal LP solution.
(C) \(\hat{w} \): value of \(w \) in LP solution.
(D) Optimal congestion must be bigger than \(\hat{w} \).
(E) \(X_{i} \): random variable one with probability \(\hat{x}_{i} \), and zero otherwise.
(F) If \(X_{i} = 1 \) then use \(\pi \) to route from \(v_{i} \) to \(u_{i} \).
(G) Otherwise use \(\sigma_{i} \).

21.3.0.4 Minimizing congestion

(A) Congestion of \(e \) is \(Y_{e} = \sum_{e \in \pi_{i}} X_{i} + \sum_{e \in \sigma_{i}} (1 - X_{i}) \).
(B) And in expectation

\[
\alpha_{e} = E[Y_{e}] = E\left[\sum_{e \in \pi_{i}} X_{i} + \sum_{e \in \sigma_{i}} (1 - X_{i}) \right]
= \sum_{e \in \pi_{i}} E[X_{i}] + \sum_{e \in \sigma_{i}} E[(1 - X_{i})]
= \sum_{e \in \pi_{i}} \hat{x}_{i} + \sum_{e \in \sigma_{i}} (1 - \hat{x}_{i}) \leq \hat{w}.
\]

(C) \(\hat{w} \): Fractional congestion (from LP solution).

21.3.0.5 Minimizing congestion - continued

(A) \(Y_{e} = \sum_{e \in \pi_{i}} X_{i} + \sum_{e \in \sigma_{i}} (1 - X_{i}) \).
(B) \(Y_{e} \) is just a sum of independent 0/1 random variables!
(C) Chernoff inequality tells us sum can not be too far from expectation!
21.3.0.6 Minimizing congestion - continued

(A) By Chernoff inequality:

\[\Pr[Y_e \geq (1 + \delta)\alpha_e] \leq \exp\left(-\frac{\alpha_e\delta^2}{4}\right) \leq \exp\left(-\frac{\hat{w}\delta^2}{4}\right). \]

(B) Let \(\delta = \sqrt{\frac{400}{\hat{w}} \ln t} \). We have that

\[\Pr[Y_e \geq (1 + \delta)\alpha_e] \leq \exp\left(-\frac{\delta^2\hat{w}}{4}\right) \leq \frac{1}{t^{100}}, \]

(C) If \(t \geq n^{1/50} \implies \forall \) edges in graph congestion \(\leq (1 + \delta)\hat{w} \).

(D) \(t \): Number of pairs, \(n \): Number of vertices in \(G \).

21.3.0.7 Minimizing congestion - continued

(A) Got: For \(\delta = \sqrt{\frac{400}{\hat{w}} \ln t} \). We have

\[\Pr[Y_e \geq (1 + \delta)\alpha_e] \leq \exp\left(-\frac{\delta^2\hat{w}}{4}\right) \leq \frac{1}{t^{100}}, \]

(B) Play with the numbers. If \(t = n \), and \(\hat{w} \geq \sqrt{n} \). Then, the solution has congestion larger than the optimal solution by a factor of

\[1 + \delta = 1 + \sqrt{\frac{20}{\hat{w}} \ln t} \leq 1 + \frac{\sqrt{20 \ln n}}{n^{1/4}}, \]

which is of course extremely close to 1, if \(n \) is sufficiently large.

21.3.0.8 Minimizing congestion: result

Theorem 21.3.2. (A) \(G \): Graph \(n \) vertices.

(B) \((s_1, t_1), \ldots, (s_t, t_t)\): pairs of vertices

(C) \(\pi_i, \sigma_i \): two different paths connecting \(s_i \) to \(t_i \)

(D) \(\hat{w} \): Fractional congestion at least \(n^{1/2} \).

(E) \(\text{opt} \): Congestion of optimal solution.

(F) \(\implies \) In polynomial time (LP solving time) choose paths

(A) congestion \(\forall \) edges: \(\leq (1 + \delta)\text{opt} \)

(B) \(\delta = \sqrt{\frac{20}{\hat{w}} \ln t} \).

21.3.0.9 When the congestion is low

(A) Assume \(\hat{w} \) is a constant.

(B) Can get a better bound by using the Chernoff inequality in its more general form.
(C) set $\delta = c \ln t / \ln \ln t$, where c is a constant. For $\mu = \alpha e$, we have that

$$
\Pr \left[Y_e \geq (1 + \delta)\mu \right] \leq \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}} \right)^\mu
$$

$$
= \exp \left(\mu(\delta - (1 + \delta) \ln(1 + \delta)) \right)
$$

$$
= \exp \left(-\mu c' \ln t \right) \leq \frac{1}{t^{O(1)}},
$$

where c' is a constant that depends on c and grows if c grows.

21.3.0.10 When the congestion is low

(A) Just proved that...
(B) if the optimal congestion is $O(1)$, then...
(C) algorithm outputs a solution with congestion $O(\log t / \log \log t)$, and this holds with high probability.

21.4 Reminder about Chernoff inequality

21.4.1 The Chernoff Bound — General Case

21.4.1.1 Chernoff inequality

Problem 21.4.1. Let X_1, \ldots, X_n be n independent Bernoulli trials, where

$$
\Pr \left[X_i = 1 \right] = p_i, \quad \Pr \left[X_i = 0 \right] = 1 - p_i,
$$

$$
Y = \sum_i X_i, \quad \text{and} \quad \mu = E[Y].
$$

We are interested in bounding the probability that $Y \geq (1 + \delta)\mu$.

21.4.1.2 Chernoff inequality

Theorem 21.4.2 (Chernoff inequality). For any $\delta > 0$,

$$
\Pr \left[Y > (1 + \delta)\mu \right] < \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}} \right)^\mu.
$$

Or in a more simplified form, for any $\delta \leq 2e - 1$,

$$
\Pr \left[Y > (1 + \delta)\mu \right] < \exp(-\mu \delta^2 / 4),
$$

and

$$
\Pr \left[Y > (1 + \delta)\mu \right] < 2^{-\mu(1+\delta)},
$$

for $\delta \geq 2e - 1$.

8
21.4.1.3 More Chernoff...

Theorem 21.4.3. Under the same assumptions as the theorem above, we have

\[\Pr[Y < (1 - \delta)\mu] \leq \exp\left(-\mu \frac{\delta^2}{2}\right). \]

Bibliography