Chapter 35

Linear time algorithms

By Sariel Har-Peled, October 31, 2018

Version: 0.3

35.1. The lowest point above a set of lines

Let L be a set of n lines in the plane. To simplify the exposition, assume the lines are in general position:

(A) No two lines of L are parallel.
(B) No line of L is vertical or horizontal.
(C) No three lines of L meet in a point.

We are interested in the problem of computing the point with the minimum y coordinate that is above all the lines of L. We consider a point on a line to be above it.

For a line $\ell \in L$, and a value $\alpha \in \mathbb{R}$, let $\ell(\alpha)$ be the value of ℓ at α. Formally, consider the intersection point of $p = \ell \cap (x = \alpha)$ (here, $x = \alpha$ is the vertical line passing through $(\alpha, 0)$). Then $\ell(x) = y(p)$.

Let $U_L(\alpha) = \max_{\ell \in L} \ell(\alpha)$ be the upper envelope of L. The function $U_L(\cdot)$ is convex, as one can easily verify. The problem asks to compute $y^* = \min_{x \in \mathbb{R}} U_L(x)$. Let x^* be the coordinate such that $y^* = U_L(x^*)$.

Definition 35.1.1. Let $\text{opt}(L) = (x^*, y^*)$ denote the optimal solution – that is, lowest point on $U_L(x)$.

Remark 35.1.2. There are some uninteresting cases of this problem. For example, if all the lines of L have negative slope, then the solution is at $x^* = +\infty$. Similarly, if all the slopes are positive, then the solution is $x^* = -\infty$. We can easily check these cases in linear time. In the following, we assume that at least one line of L has positive slope, and at least one line has a negative slope.

Lemma 35.1.3. Given a value x, and a set L of n lines, one can in linear time do the following:
Lemma 35.1.7 (Prune). Given a set L of n lines, one can compute, in linear time, either:

(A) A set $L' \subseteq L$ such that $\text{opt}(L) = \text{opt}(L')$, and $|L'| \leq (7/8)|L|$.

Proof: (A) Computing $\ell(x)$, for $x \in \mathbb{R}$, takes $O(1)$ time. Thus computing this value for all the lines of L takes $O(n)$ time, and the maximum can be computed in $O(n)$ time.

(B) Decide which one of the following happens: (I) $x = x^*$, (II) $x < x^*$, or (III) $x > x^*$.

Proof: (A) Computing $\ell(x)$, for $x \in \mathbb{R}$, takes $O(1)$ time. Thus computing this value for all the lines of L takes $O(n)$ time, and the maximum can be computed in $O(n)$ time.

(B) For case (I) to happen, there must be two lines that realizes $U_L(x)$ – one of them has a positive slope, the other has negative slope. This clearly can be checked in linear time.

Otherwise, consider $U_L(x)$. If there is a single line that realizes the maximum for x, then its slope is the slope of $U_L(x)$ at x. If this slope is positive than $x^* < x$. If the slope is negative then $x < x^*$.

The slightly more challenging case is when two lines realizes the value of $U_L(x)$. That is $(x, U_L(x))$ is an intersection point of two lines of L (i.e., a vertex) on the upper envelope of the lines of L). Let ℓ_1, ℓ_2 be these two lines, and assume that $\text{slope}(\ell_1) < \text{slope}(\ell_2)$.

If slope($\ell_2) < 0$, then both lines have negative slope, and $x^* > x$. If slope($\ell_1) > 0$, then both lines have positive slope, and $x^* < x$. If slope($\ell_1) < 0$, and slope($\ell_1) > 0$, then this is case (I), and we are done.

Lemma 35.1.4. Let (x, y) be the intersection point of two lines $\ell_1, \ell_2 \in L$, such that $\text{slope}(\ell_1) < \text{slope}(\ell_2)$, and $x < x^*$. Then $\text{opt}(L) = \text{opt}(L - \ell_1)$, where $L - \ell_1 = L \setminus \{\ell_1\}$.

Proof: See Figure 35.2. Since $x < x^*$, it must be that $U_L(\cdot)$ has a negative slope at x (and also immediately to its right). In particular, for any $\alpha > x$, we have that $U_L(\alpha) \geq \ell_2(x) > \ell_1(x)$. That is, the line $\ell_1(x)$ is “buried” below ℓ_2, and cannot touch $U_L(\cdot)$ to the right of x. In particular, removing ℓ_1 from L cannot change $U_L(\cdot)$ to the right of x. Furthermore, since $U_L(\cdot)$ has negative slope immediately after x, it implies that minimum point cannot move by the deletion of ℓ_1. Thus implying the claim.

Lemma 35.1.5. Let (x, y) be the intersection point of two lines $\ell_1, \ell_2 \in L$, such that $\text{slope}(\ell_1) < \text{slope}(\ell_2)$, and $x^* < x$. Then $\text{opt}(L) = \text{opt}(L - \ell_2)$.

Proof: Symmetric argument to the one used in the proof of Lemma 35.1.4.

Observation 35.1.6. The point $p = \text{opt}(L)$ is a vertex formed by the intersection of two lines of L. Indeed, since none of the lines of L are horizontal, if p was in the middle of a line, then we could move it and improve the value of the solution.

Figure 35.2: Illustration of the proof of Lemma 35.1.4.
(B) A value \(x \) such that \(x^*(L) = x \).

Proof: If \(|L| = n = O(1) \) then one can compute \(\text{opt}(L) \) by brute force. Indeed, compute all the \(\binom{n}{2} \) vertices induced by \(L \), and for each one of them check if they define the optimal solution using the algorithm of Lemma 35.1.3. This takes \(O(1) \) time, as desired.

Otherwise, pair the lines of \(L \) in \(N = \lceil n/2 \rceil \) pairs \(\ell_i, \ell'_i \). For each pair, let \(x_i \) be the \(x \)-coordinate of the vertex \(\ell_i \cap \ell'_i \). Compute, in linear time, using median selection, the median value \(z \) of \(x_1, \ldots, x_N \). For the sake of simplicity of exposition assume that \(x_i < z \), for \(i = 1, \ldots, N/2 - 1 \), and \(x_i > z \), for \(i = N/2 + 1, \ldots, N \) (otherwise, reorder the lines and the values so that it happens).

Using the algorithm of Lemma 35.1.3 decide which of the following happens:

(I) \(z = x^* \): we found the optimal solution, and we are done.

(II) \(z < x^* \). But then \(x_i < z < x^* \), for \(i = 1, \ldots, N/2 - 1 \), By Lemma 35.1.4, either \(\ell_i \) or \(\ell'_i \) can be dropped without effecting the optimal solution, and which one can be dropped can be decided in \(O(1) \) time. In particular, let \(L' \) be the set of lines after we drop a line from each such pair. We have that \(\text{opt}(L') = \text{opt}(L) \), and \(|L'| = n - (N/2 - 1) \leq (7/8)n \).

(III) \(z > x^* \). This case is handled symmetrically, using Lemma 35.1.5.

Theorem 35.1.8. Given a set \(L \) of \(n \) lines in the plane, one can compute the lowest point that is above all the lines of \(L \) (i.e., \(\text{opt}(L) \)) in linear time.

Proof: The algorithm repeatedly apply the pruning algorithm of Lemma 35.1.7. Clearly, by the above, this algorithm computes \(\text{opt}(L) \) as desired.

In the \(i \)th iteration of this algorithm, if the set of lines has \(n_i \) lines, then this iteration takes \(O(n_i) \) time. However, \(n_i \leq (7/8)^i n \). In particular, the overall running time of the algorithm is

\[
O\left(\sum_{i=0}^{\infty} \left(\frac{7}{8}\right)^i n\right) = O(n).
\]

35.2. Bibliographical notes

The algorithm presented in Section 35.1 is a simplification of the work of Megiddo [Meg84]. Megiddo solved the much harder problem of solving linear programming in constant dimension in linear time. The algorithm presented is essentially the core of his basic algorithm.
Bibliography