
Chapter 21

Linear Programming II
By Sariel Har-Peled, November 28, 2018¬ Version: 1.1

21.1. The Simplex Algorithm in Detail

Simplex(L̂ a LP)
Transform L̂ into slack form.
Let L be the resulting slack form.
L′← Feasible(L)
x ← LPStartSolution(L′)
x′← SimplexInner(L′, x) (*)
z ← objective function value of x′

if z > 0 then
return “No solution”

x′′← SimplexInner(L, x′)
return x′′

Figure 21.1: The Simplex algorithm.

The Simplex algorithm is presented on the right.
We assume that we are given SimplexInner, a
black box that solves a LP if the trivial solution of
assigning zero to all the nonbasic variables is feasi-
ble. We remind the reader that L′ = Feasible(L)
returns a new LP for which we have an easy fea-
sible solution. This is done by introducing a new
variable x0 into the LP, where the original LP L̂ is
feasible if and only if the new LP L has a feasible
solution with x0 = 0. As such, we set the target
function in L to be minimizing x0.

We now apply SimplexInner to L′ and the easy
solution computed for L′ by LPStartSolution(L′).
If x0 > 0 in the optimal solution for L′ then there
is no feasible solution for L, and we exit. Otherwise, we found a feasible solution to L, and we use it as
the starting point for SimplexInner when it is applied to L.

Thus, in the following, we have to describe SimplexInner - a procedure to solve an LP in slack form,
when we start from a feasible solution defined by the nonbasic variables assigned value zero.

One technicality that is ignored above, is that the starting solution we have for L′, generated by
LPStartSolution(L) is not legal as far as the slack form is concerned, because the non-basic variable x0
is assigned a non-zero value. However, this can be easily resolve by immediately pivot on x0 when we
execute (*) in Figure 21.1. Namely, we first try to decrease x0 as much as possible.

21.2. The SimplexInner Algorithm
We next describe the SimplexInner algorithm.

We remind the reader that the LP is given to us in slack form, see Figure 21.2. Furthermore, we
assume that the trivial solution x = τ, which is assigning all nonbasic variables zero, is feasible. In
particular, we immediately get the objective value for this solution from the notation which is v.

Assume, that we have a nonbasic variable xe that appears in the objective function, and furthermore
its coefficient ce is positive in (the objective function), which is z = v +

∑
j∈N c j x j . Formally, we pick e

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

B - Set of indices of basic variables
N - Set of indices of nonbasic variables
n = |N | - number of original variables
b, c - two vectors of constants
m = |B | - number of basic variables (i.e., num-
ber of inequalities)
A =

{
ai j

}
- The matrix of coefficients

N ∪ B = {1, . . . ,n + m}
v - objective function constant.

max z = v +
∑
j∈N

c j x j,

s.t. xi = bi −
∑
j∈N

ai j x j for i ∈ B,

xi ≥ 0, ∀i = 1, . . . ,n + m.

(i) (ii)

Figure 21.2: A linear program in slack form is specified by a tuple (N,B, A, b, c, v).

to be one of the indices of {
j
��� c j > 0, j ∈ N

}
.

The variable xe is the entering variable variable (since it is going to join the set of basic variables).
Clearly, if we increase the value of xe (from the current value of 0 in τ) then one of the basic variables

is going to vanish (i.e., become zero). Let xl be this basic variable. We increase the value of xe (the
entering variable) till xl (the leaving variable) becomes zero.

Setting all nonbasic variables to zero, and letting xe grow, implies that xi = bi − aiexe, for all i ∈ B.
All those variables must be non-negative, and thus we require that ∀i ∈ B it holds xi = bi − aiexe ≥ 0.

Namely, xe ≤ (bi/aie) or alternatively, 1
xe
≥

aie

bi
. Namely, 1

xe
≥ max

i∈B

aie

bi
and, the largest value of xe

which is still feasible is

U =
(
max
i∈B

aie

bi

) −1
.

We pick l (the index of the leaving variable) from the set all basic variables that vanish to zero when
xe = U. Namely, l is from the set {

j
���� a je

b j
= U where j ∈ B

}
.

Now, we know xe and xl . We rewrite the equation for xl in the LP so that it has xe on the left size.
Formally, we do

xl = bl −
∑
j∈N

al j x j ⇒ xe =
bl

ale
−

∑
j∈N∪{l}

al j

ale
x j, where all = 1.

We need to remove all the appearances on the right side of the LP of xe. This can be done by
substituting xe into the other equalities, using the above equality. Alternatively, we do beforehand
Gaussian elimination, to remove any appearance of xe on the right side of the equalities in the LP (and
also from the objective function) replaced by appearances of xl on the left side, which we then transfer
to the right side.

In the end of this process, we have a new equivalent LP where the basic variables are B′ = (B \ {l})∪
{e} and the non-basic variables are N′ = (N \ {e}) ∪ {l}.

2

In end of this pivoting stage the LP objective function value had increased, and as such, we made
progress. Note, that the linear system is completely defined by which variables are basic, and which are
non-basic. Furthermore, pivoting never returns to a combination (of basic/non-basic variable) that was
already visited. Indeed, we improve the value of the objective function in each pivoting stage. Thus, we
can do at most (

n + m
n

)
≤

(n + m
n
· e

) n

pivoting steps. And this is close to tight in the worst case (there are examples where 2n pivoting steps
are needed).

Each pivoting step takes polynomial time in n and m. Thus, the overall running time of Simplex is
exponential in the worst case. However, in practice, Simplex is extremely fast.

21.2.1. Degeneracies
If you inspect carefully the Simplex algorithm, you would notice that it might get stuck if one of the bis
is zero. This corresponds to a case where > m hyperplanes passes through the same point. This might
cause the effect that you might not be able to make any progress at all in pivoting.

There are several solutions, the simplest one is to add tiny random noise to each coefficient. You
can even do this symbolically. Intuitively, the degeneracy, being a local phenomena on the polytope
disappears with high probability.

The larger danger, is that you would get into cycling; namely, a sequence of pivoting operations that
do not improve the objective function, and the bases you get are cyclic (i.e., infinite loop).

There is a simple scheme based on using the symbolic perturbation, that avoids cycling, by carefully
choosing what is the leaving variable. This is described in detail in Section 21.6.

There is an alternative approach, called Bland’s rule, which always choose the lowest index variable
for entering and leaving out of the possible candidates. We will not prove the correctness of this approach
here.

21.2.2. Correctness of linear programming
Definition 21.2.1. A solution to an LP is a basic solution if it the result of setting all the nonbasic
variables to zero.

Note that the Simplex algorithm deals only with basic solutions. In particular we get the following.

Theorem 21.2.2 (Fundamental theorem of Linear Programming.). For an arbitrary linear pro-
gram, the following statements are true:
(A) If there is no optimal solution, the problem is either infeasible or unbounded.
(B) If a feasible solution exists, then a basic feasible solution exists.
(C) If an optimal solution exists, then a basic optimal solution exists.

Proof: Proof is constructive by running the simplex algorithm.

21.2.3. On the ellipsoid method and interior point methods
The Simplex algorithm has exponential running time in the worst case.

The ellipsoid method is weakly polynomial (namely, it is polynomial in the number of bits of the
input). Khachian in 1979 came up with it. It turned out to be completely useless in practice.

3

In 1984, Karmakar came up with a different method, called the interior-point method which is also
weakly polynomial. However, it turned out to be quite useful in practice, resulting in an arm race
between the interior-point method and the simplex method.

The question of whether there is a strongly polynomial time algorithm for linear programming, is
one of the major open questions in computer science.

21.3. Duality and Linear Programming
Every linear program L has a dual linear program L′. Solving the dual problem is essentially
equivalent to solving the primal linear program (i.e., the original) LP.

21.3.1. Duality by Example

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

Figure 21.3: The linear pro-
gram L.

Consider the linear program L depicted on the right (Figure 21.3).
Note, that any feasible solution, gives us a lower bound on the maximal
value of the target function, denoted by η. In particular, the solution
x1 = 1, x2 = x3 = 0 is feasible, and implies z = 4 and thus η ≥ 4.

Similarly, x1 = x2 = 0, x3 = 3 is feasible and implies that η ≥ z = 9.
We might be wondering how close is this solution to the optimal

solution? In particular, if this solution is very close to the optimal
solution, we might be willing to stop and be satisfied with it.

Let us add the first inequality (multiplied by 2) to the second inequality (multiplied by 3). Namely,
we add the two inequalities:

2(x1 + 4x2) ≤ 2(1)
+3(3x1 − x2 + x3) ≤ 3(3).

The resulting inequality is

11x1 + 5x2 + 3x3 ≤ 11. (21.1)

Note, that this inequality must hold for any feasible solution of L. Now, the objective function is
z = 4x1 + x2 + 3x3 and x1,x2 and x3 are all non-negative, and the inequality of Eq. (21.1) has larger
coefficients that all the coefficients of the target function, for the corresponding variables. It thus
follows, that for any feasible solution, we have

z = 4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11,

since all the variables are non-negative. As such, the optimal value of the LP L is somewhere between
9 and 11.

We can extend this argument. Let us multiply the first inequality by y1 and second inequality by y2
and add them up. We get:

y1(x1 + 4x2) ≤ y1(1)
+ y2(3x1 - x2 + x3) ≤ y2(3)
(y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2. (21.2)

4

max
n∑

j=1
c j x j

s.t.
n∑

j=1
ai j x j ≤ bi,

for i = 1, . . . ,m,
x j ≥ 0,

for j = 1, . . . ,n.

min
m∑

i=1
biyi

s.t.
m∑

i=1
ai j yi ≥ c j,

for j = 1, . . . ,n,
yi ≥ 0,

for i = 1, . . . ,m.

max
m∑

i=1
(−bi)yi

s.t.
m∑

i=1
(−ai j)yi ≤ −c j,

for j = 1, . . . ,n,
yi ≥ 0,

fori = 1, . . . ,m.

(a) primal program (b) dual program (c) dual program in standard
form

Figure 21.5: Dual linear programs.

Compare this to the target function z = 4x1 + x2 + 3x3. If this expression is bigger than the target
function in each variable, namely

min y1 + 3y2

s.t. y1 + 3y2 ≥ 4
4y1 − y2 ≥ 1
y2 ≥ 3
y1, y2 ≥ 0.

Figure 21.4: The dual LP L̂.
The primal LP is depicted in
Figure 21.3.

4 ≤ y1 + 3y2

1 ≤ 4y1 − y2

3 ≤ y2,

then, z = 4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2, the
last step follows by Eq. (21.2).

Thus, if we want the best upper bound on η (the maximal value of z)
then we want to solve the LP L̂ depicted in Figure 21.4. This is the dual
program to L and its optimal solution is an upper bound to the optimal
solution for L.

21.3.2. The Dual Problem
Given a linear programming problem (i.e., primal problem, seen in Figure 21.5 (a), its associated dual
linear program is in Figure 21.5 (b). The standard form of the dual LP is depicted in Figure 21.5 (c).
Interestingly, you can just compute the dual LP to the given dual LP. What you get back is the original
LP. This is demonstrated in Figure 21.6.

We just proved the following result.

Lemma 21.3.1. Let L be an LP, and let L′ be its dual. Let L′′ be the dual to L′. Then L and L′′ are
the same LP.

21.3.3. The Weak Duality Theorem
Theorem 21.3.2. If (x1, x2, . . . , xn) is feasible for the primal LP and (y1, y2, . . . , ym) is feasible for the
dual LP, then ∑

j

c j x j ≤
∑

i

biyi .

5

max
m∑

i=1
(−bi)yi

s.t.
m∑

i=1
(−ai j)yi ≤ −c j,

for j = 1, . . . ,n,
yi ≥ 0,

for i = 1, . . . ,m.

min
n∑

j=1
−c j x j

s.t.
n∑

j=1
(−ai j)x j ≥ −bi,

for i = 1, . . . ,m,
x j ≥ 0,

for j = 1, . . . ,n.

max
n∑

j=1
c j x j

s.t.
n∑

j=1
ai j x j ≤ bi,

for i = 1, . . . ,m,
x j ≥ 0,

for j = 1, . . . ,n.

(a) dual program (b) the dual program to the
dual program (c) ... which is the original LP.

Figure 21.6: The dual to the dual linear program. Computing the dual of (a) can be done mechanically
by following Figure 21.5 (a) and (b). Note, that (c) is just a rewriting of (b).

Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal.

Proof: By substitution from the dual form, and since the two solutions are feasible, we know that∑
j

c j x j ≤
∑

j

(
m∑

i=1
yiai j

)
x j ≤

∑
i

(∑
j

ai j x j

)
yi ≤

∑
i

biyi .

Interestingly, if we apply the weak duality theorem on the dual program (namely, Figure 21.6 (a) and

(b)), we get the inequality
m∑

i=1
(−bi)yi ≤

n∑
j=1
−c j x j , which is the original inequality in the weak duality

theorem. Thus, the weak duality theorem does not imply the strong duality theorem which will be
discussed next.

21.4. The strong duality theorem
The strong duality theorem states the following.
Theorem 21.4.1. If the primal LP problem has an optimal solution x∗ =

(
x∗1, . . . , x

∗
n
)

then the dual also
has an optimal solution, y∗ =

(
y∗1, . . . , y

∗
m
)
, such that∑

j

c j x∗j =
∑

i

biy
∗
i .

Its proof is somewhat tedious and not very insightful, the basic idea to prove this theorem is to run
the simplex algorithm simultaneously on both the primal and the dual LP making steps in sync. When
the two stop, they must be equal of they are feasible. We omit the tedious proof.

21.5. Some duality examples

21.5.1. Shortest path
You are given a graph G = (V,E), with source s and target t. We have weights ω(u, v) on each edge
(u, v) ∈ E, and we are interested in the shortest path in this graph from s to t. To simplify the exposition

6

assume that there are no incoming edges in s and no edges leave t. To this end, let dx be a variable
that is the distance between s and x, for any x ∈ V. Clearly, we must have for any edge (u, v) ∈ E,
that du + ω(u, v) ≥ dv. We also know that ds = 0. Clearly, a trivial solution to this constraints is to set
all the variables to zero. So, we are trying to find the assignment that maximizes dt, such that all the
constraints are filled. As such, the LP for computing the shortest path from s to t is the following LP.

max dt

s.t. ds ≤ 0
du + ω(u, v) ≥ dv ∀(u, v) ∈ E,
dx ≥ 0 ∀x ∈ V.

Equivalently, we get

max dt

s.t. ds ≤ 0
dv − du ≤ ω(u, v) ∀(u, v) ∈ E,
dx ≥ 0 ∀x ∈ V.

Let use compute the dual. To this end, let yuv be the dual variable for the edge (u, v), and let ys be the
dual variable for the ds ≤ 0 inequality. We get the following dual LP.

min
∑
(u,v)∈E

yuvω(u, v)

s.t. ys −
∑
(s,u)∈E

ysu ≥ 0 (∗)∑
(u,x)∈E

yux −
∑
(x,v)∈E

yxv ≥ 0 ∀x ∈ V \ {s, t} (∗∗)∑
(u,t)∈E

yut ≥ 1 (∗ ∗ ∗)

yuv ≥ 0 ∀(u, v) ∈ E,
ys ≥ 0.

Look carefully at this LP. The trick is to think about the yuv as a flow on the edge yuv. (Also, we
assume here that the weights are positive.) Then, this LP is the min cost flow of sending one unit of
flow from the source s to t. Indeed, if the weights are positive, then (**) can be assumed to be hold
with equality in the optimal solution, and this is conservation of flow. Equation (***) implies that one
unit of flow arrives to the sink t. Finally, (*) implies that at least ys units of flow leaves the source. The
remaining of the LP implies that ys ≥ 1. Of course, this min-cost flow version, is without capacities on
the edges.

7

21.5.2. Set Cover and Packing
Consider an instance of Set Cover with (S,F), where S = {u1, . . . ,un} and F = {F1, . . . ,Fm}, where Fi ⊆ S.
The natural LP to solve this problem is

min
∑
Fj∈F

x j

s.t.
∑

Fj∈F,
ui∈Fj

x j ≥ 1 ∀ui ∈ S,

x j ≥ 0 ∀Fj ∈ F.

The dual LP is

max
∑
ui∈S

yi

s.t.
∑

ui∈Fj

yi ≤ 1 ∀Fj ∈ F,

yi ≥ 0 ∀ui ∈ S.

This is a packing LP. We are trying to pick as many vertices as possible, such that no set has more than
one vertex we pick. If the sets in F are pairs (i.e., the set system is a graph), then the problem is known
as edge cover , and the dual problem is the familiar independent set problem. Of course, these are
all the fractional versions – getting an integral solution for these problems is completely non-trivial, and
in all these cases is impossible in polynomial time since the problems are NP-Complete.

As an exercise, write the LP for Set Cover for the case where every set has a price associated with
it, and you are trying to minimize the total cost of the cover.

21.5.3. Network flow
(We do the following in excruciating details – hopefully its make the presentation clearer.)

Let assume we are given an instance of network flow G, with source s, and sink t. As usual, let us
assume there are no incoming edges into the source, no outgoing edges from the sink, and the two are
not connected by an edge. The LP for this network flow is the following.

max
∑
(s,v)∈E

xs→v

xu→v ≤ c(u→ v) ∀(u, v) ∈ E∑
(u,v)∈E

xu→v −
∑
(v,w)∈E

xv→w ≤ 0 ∀v ∈ V \ {s, t}

−
∑
(u,v)∈E

xu→v +
∑
(v,w)∈E

xv→w ≤ 0 ∀v ∈ V \ {s, t}

0 ≤ xu→v ∀(u, v) ∈ E.

To perform the duality transform, we define a dual variable for each inequality. We get the following

8

dual LP:

max
∑
(s,v)∈E

xs→v

xu→v ≤ c(u→ v) ∗ yu→v ∀(u, v) ∈ E∑
(u,v)∈E

xu→v −
∑
(v,w)∈E

xv→w ≤ 0 ∗ yv ∀v ∈ V \ {s, t}

−
∑
(u,v)∈E

xu→v +
∑
(v,w)∈E

xv→w ≤ 0 ∗ y′v ∀v ∈ V \ {s, t}

0 ≤ xu→v ∀(u, v) ∈ E.

Now, we generate the inequalities on the coefficients of the variables of the target functions. We need to
carefully account for the edges, and we observe that there are three kinds of edges: source edges, regular
edges, and sink edges. Doing the duality transformation carefully, we get the following:

min
∑
(u,v)∈E

c(u→ v) yu→v

1 ≤ ys→v + yv − y′v ∀(s, v) ∈ E
0 ≤ yu→v + yv − y′v − yu + y′u ∀(u, v) ∈ E(G \ {s, t})
0 ≤ yv→t − yv + y′v ∀(v, t) ∈ E
yu→v ≥ 0 ∀(u, v) ∈ E
yv ≥ 0 ∀v ∈ V
y′v ≥ 0 ∀v ∈ V

To understand what is going on, let us rewrite the LP, introducing the variable dv = yv − y
′
v, for each

v ∈ V­. We get the following modified LP:

min
∑
(u,v)∈E

c(u→ v) yu→v

1 ≤ ys→v + dv ∀(s, v) ∈ E
0 ≤ yu→v + dv − du ∀(u, v) ∈ E(G \ {s, t})
0 ≤ yv→t − dv ∀(v, t) ∈ E
yu→v ≥ 0 ∀(u, v) ∈ E

Adding the two variables for t and s, and setting their values as follows dt = 0 and ds = 1, we get the
following LP:

­We could have done this directly, treating the two inequalities as equality, and multiplying it by a single variable that
can be both positive and negative – however, it is useful to see why this is correct at least once.

9

min
∑
(u,v)∈E

c(u→ v) yu→v

0 ≤ ys→v + dv − ds ∀(s, v) ∈ E
0 ≤ yu→v + dv − du ∀(u, v) ∈ E(G \ {s, t})
0 ≤ yv→t + dt − dv ∀(v, t) ∈ E
yu→v ≥ 0 ∀(u, v) ∈ E
ds = 1, dt = 0

Which simplifies to the following LP:

min
∑
(u,v)∈E

c(u→ v) yu→v

du − dv ≤ yu→v ∀(u, v) ∈ E
yu→v ≥ 0 ∀(u, v) ∈ E
ds = 1, dt = 0.

The above LP can be interpreted as follows: We are assigning weights to the edges (i.e., y(u,v)). Given
such an assignment, it is easy to verify that setting du (for all u) to be the shortest path distance under
this weighting to the sink t, complies with all inequalities, the assignment ds = 1 implies that we require
that the shortest path distance from the source to the sink has length exactly one.

We are next going to argue that the optimal solution to this LP is a min-cut. Lets us first start with
the other direction, given a cut (S,T) with s ∈ S and t ∈ T , observe that setting

du = 1 ∀u ∈ S
du = 0 ∀u ∈ T

yu→v = 1 ∀(u, v) ∈ (S,T)
yu→v = 0 ∀(u, v) ∈ E \ (S,T)

is a valid solution for the LP.
As for the other direction, consider the optimal solution for the LP, and let its target function value

be

α∗ =
∑
(u,v)∈E

c(u→ v) y∗u→v

(we use (*) notation to the denote the values of the variables in the optimal LP solution). Consider
generating a cut as follows, we pick a random value uniformly in z ∈ [0,1], and we set S =

{
u

��� d∗u ≥ z
}

and T =
{
u

��� d∗u < z
}
. This is a valid cut, as s ∈ S (as d∗s = 1) and t ∈ T (as d∗t = 0). Furthermore, an

edge (u, v) is in the cut, only if d∗u > d∗v (otherwise, it is not possible to cut this edge using this approach).
In particular, the probability of u ∈ S and v ∈ T , is exactly d∗u − d∗v ! Indeed, it is the probability that

z falls inside the interval [d∗v , d∗u]. As such, (u, v) is in the cut with probability d∗u − d∗v (again, only if
d∗u > d∗v), which is bounded by y∗

(u,v) (by the inequality du − dv ≤ yu→v in the LP).

10

So, let Xu→v be an indicator variable which is one if the edge is in the generated cu. We just argued
that E[Xu→v] = P[Xu→v = 1] ≤ y∗

(u,v). We thus have that the expected cost of this random cut is

E


∑
(u,v)∈E

Xu→v c(u→ v)

 =
∑
(u,v)∈E

c(u→ v)E[Xu→v] ≤
∑
(u,v)∈E

c(u→ v)y∗u→v = α
∗.

That is, the expected cost of a random cut here is at most the value of the LP optimal solution. In
particular, there must be a cut that has cost at most α∗, see Remark 21.5.2 below. However, we argued
that α∗ is no larger than the cost of any cut. We conclude that α∗ is the cost of the min cut.

We are now ready for the kill, the optimal value of the original max-flow LP; that is, the max-flow
(which is a finite number because all the capacities are bounded numbers), is equal by the strong duality
theorem, to the optimal value of the dual LP (i.e., α∗). We just argued that α∗ is the cost of the min
cut in the given network. As such, we proved the following.

Lemma 21.5.1. The Min-Cut Max-Flow Theorem follows from the strong duality Theorem for Linear
Programming.

Remark 21.5.2. In the above, we used the following “trivial” but powerful argument. Assume you have
a random variable Z , and consider its expectation µ = E[Z]. The expectation µ is the weighted average
value of the values the random variable Z might have, and in particular, there must be a value z that
might be assigned to Z (with non-zero probability), such that z ≤ µ. Putting it differently, the weighted
average of a set of numbers is bigger (formally, no smaller) than some number in this set.

This argument is one of the standard tools in the probabilistic method – a technique to prove the
existence of entities by considering expectations and probabilities.

21.6. Solving LPs without ever getting into a loop - symbolic
perturbations

21.6.1. The problem and the basic idea
Consider the following LP:

max z = v +
∑
j∈N

c j x j,

s.t. xi = bi −
∑
j∈N

ai j x j for i = 1, . . . ,n,

xi ≥ 0, ∀i = 1, . . . ,n + m.

(Here B = {1, . . . ,n} and N = {n + 1, . . . ,n + m}.) The Simplex algorithm might get stuck in a loop of
pivoting steps, if one of the constants bi becomes zero during the algorithm execution. To avoid this,
we are going to add tiny infinitesimals to all the equations. Specifically, let ε > 0 be an arbitrarily small
constant, and let εi = εi. The quantities ε1, . . . , εn are infinitesimals of different scales. We slightly

11

perturb the above LP by adding them to each equation. We get the following modified LP:

max z = v +
∑
j∈N

c j x j,

s.t. xi = εi + bi −
∑
j∈N

ai j x j for i = 1, . . . ,n,

xi ≥ 0, ∀i = 1, . . . ,n + m.

Importantly, any feasible solution to the original LP translates into a valid solution of this LP (we made
things better by adding these symbolic constants).

The rule of the game is now that we treat ε1, . . . , εn as symbolic constants. Of course, when we do
pivoting, we need to be able to compare two numbers and decide which one is bigger. Formally, given
two numbers

α = α0 + α1ε1 + · · · + αnεn and β = β0 + β1ε1 + · · · + βnεn, (21.3)

then α > β if and only if there is an index i such that α0 = β0, α1 = β1, . . . , αi−1 = βi−1 and αi > βi. That
is, α > β if the vector (α0, α1, . . . , αn) is lexicographically larger than (β0, β1, . . . , βn).

Significantly, but not obviously at this stage, the simplex algorithm would never divide an εi by an
ε j , so we are good to go – we can perform all the needed arithmetic operations of the Simplex using
these symbolic constants, and we claim that now the constant term (which is a number of the form
of Eq. (21.3)) is now never zero. This implies immediately that the Simplex algorithm always makes
progress, and it does terminates. We still need to address the two issues:
(A) How are the symbolic perturbations are updated at each iteration?
(B) Why the constants can never be zero?

21.6.2. Pivoting as a Gauss elimination step
Consider the LP equations

xi +
∑
j∈N

ai j x j = bi, for i ∈ B,

where B = {1, . . . ,n} and N = {n + 1, . . . ,n + m}. We can write these equations down in matrix form

x1 x2 . . . xn xn+1 xn+2 . . . x j . . . xn+m const
1 0 . . . 0 a1,n+1 a1,n+2 . . . a1,j . . . a1,n+m b1
0 1 . . . 0 a2,n+1 a2,n+2 . . . a2,j . . . a2,n+m b2
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 1 0 . . . 0 ak,n+1 ak,n+2 . . . ak,j
... ak,n+m bk

...
...

...
...

...
...

...
...

...
...

...
0 . . . 0 1 an,n+1 an,n+2 . . . an,j . . . an,n+m bn

Assume that now we do a pivoting step with x j entering the basic variables, and xk leaving. To this end,
let us multiply the kth row (i.e., the kth equation) by 1/ak,j , this result in the kth row having 1 instead
of ak,j . Let this resulting row be denoted by r. Now, add ai,jr to the ith row of the matrix, for all i.
Clearly, in the resulting row/equation, the coefficient of x j is going to be zero, in all rows except the kth

12

one, where it is 1. Note, that on the matrix on the left side, all the columns are the same, except for the
kth column, which might now have various numbers in this column. The final step is to exchange the
kth column on the left, with the jth column on the right. And that is one pivoting step, when working
on the LP using a matrix. It is very similar to one step of the Gauss elimination in matrices, if you are
familiar with that.

21.6.2.1. Back to the perturbation scheme

We now add a new matrix to the above representations on the right side, that keeps track of the εs.
This looks initially as follows.

x1 x2 . . . xn xn+1 . . . x j . . . xn+m const ε1 ε2 . . . εn

1 0 . . . 0 a1,n+1 . . . a1,j . . . a1,n+m b1 1 0 . . . 0
0 1 . . . 0 a2,n+1 . . . a2,j . . . a2,n+m b2 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...
...
...
...

0 0 . . . 0 1 0 . . . 0 ak,n+1 . . . ak,j
... ak,n+m

...
...
...
...
...

...
...

...
...

...
...

...
...

...
...

...
...
...
...

0 . . . 0 1 an,n+1 . . . an,j . . . an,n+m bn 0 0 . . . 1

Now, we run the algorithm as described above, using the εs to resolve which variables are entering
and leaving. The critical observation is that throughout the algorithm execution we are adding rows, and
multiplying them by non-zero constants. The matrix on the right has initially full rank, and throughout
the execution of the algorithm its rank remains the same (because the linear operation we do on the
rows can not change the rank of the matrix). In particular, it is impossible that a row on the right side
of the matrix is all zero, or equal to another row, or equal to another row if multiplied by a constant.
Namely, the symbolic constant encoded by the εs as we run the Simplex algorithm can never be zero.
And furthermore, these constants are never equal for two different equations. We conclude that the
Simplex algorithm now always make progress in each pivoting step.

21.6.2.2. The overall algorithm

We run the Simplex algorithm with the above described symbolic perturbation. The final stroke is that
each basic variable xi in the computed solution now equal to a number of the form xi = α0 +

∑
i αiεi. We

interpret this as xi = α0, by setting all the εs to be zero.

Bibliography

13

	Linear Programming II
	The Simplex Algorithm in Detail
	The SimplexInner Algorithm
	Degeneracies
	Correctness of linear programming
	On the ellipsoid method and interior point methods

	Duality and Linear Programming
	Duality by Example
	The Dual Problem
	The Weak Duality Theorem

	The strong duality theorem
	Some duality examples
	Shortest path
	Set Cover and Packing
	Network flow

	Solving LPs without ever getting into a loop - symbolic perturbations
	The problem and the basic idea
	Pivoting as a Gauss elimination step

	Bibliography

