Chapter 16

Network Flow IV - Applications II

By Sariel Har-Peled, October 31, 2018

16.1. Airline Scheduling

Problem 16.1.1. Given information about flights that an airline needs to provide, generate a profitable schedule.

The input is a detailed information about “legs” of flight that the airline need to serve. We denote this set of flights by \(F \). We would like to find the minimum number of airplanes needed to carry out this schedule. For an example of possible input, see Figure 16.1 (i).

1: Boston (depart 6 A.M.) - Washington DC (arrive 7 A.M.).
2: Urbana (depart 7 A.M.) - Champaign (arrive 8 A.M.)
3: Washington (depart 8 A.M.) - Los Angeles (arrive 11 A.M.)
4: Urbana (depart 11 A.M.) - San Francisco (arrive 2 P.M.)
5: San Francisco (depart 2:15 P.M.) - Seattle (arrive 3:15 P.M.)
6: Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.).

Figure 16.1: (i) a set \(F \) of flights that have to be served, and (ii) the corresponding graph \(G \) representing these flights.

We can use the same airplane for two segments \(i \) and \(j \) if the destination of \(i \) is the origin of the segment \(j \) and there is enough time in between the two flights for required maintenance. Alternatively, the airplane can fly from \(\text{dest}(i) \) to \(\text{origin}(j) \) (assuming that the time constraints are satisfied).

Example 16.1.2. As a concrete example, consider the flights:

(A) Boston (depart 6 A.M.) - Washington D.C. (arrive 7 A.M.).
(B) Washington (depart 8 A.M.) - Los Angeles (arrive 11 A.M.)
(C) Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.)

This schedule can be served by a single airplane by adding the leg “Los Angeles (depart 12 noon)- Las Vegas (1 P.M.)” to this schedule.

\(\text{\textcopyright} \) This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
16.1.1. Modeling the problem

The idea is to model the feasibility constraints by a graph. Specifically, G is going to be a directed graph over the flight legs. For i and j, two given flight legs, the edge (i, j) will be present in the graph G if the same airplane can serve both i and j; namely, the same airplane can perform leg i and afterwards serves the leg j.

Thus, the graph G is acyclic. Indeed, since we can have an edge (i, j) only if the flight j comes after the flight i (in time), it follows that we can not have cycles.

We need to decide if all the required legs can be served using only k airplanes?

16.1.2. Solution

The idea is to perform a reduction of this problem to the computation of circulation. Specifically, we construct a graph J, as follows:

- For every leg i, we introduce two vertices $u_i, v_i \in V_J$. We also add a source vertex s and a sink vertex t to J. We set the demand at t to be k, and the demand at s to be $-k$ (i.e., k units of flow are leaving s and need to arrive to t).
- Each flight on the list must be served. This is forced by introducing an edge $e_i = (u_i, v_i)$, for each leg i. We also set the lower bound on e_i to be 1, and the capacity on e_i to be 1 (i.e., $\ell(e_i) = 1$ and $c(e_i) = 1$).
- If the same plane can perform flight i and j (i.e., $(i, j) \in E(G)$) then add an edge (v_i, u_j) with capacity 1 to J (with no lower bound constraint).
- Since any airplane can start the day with flight i, we add an edge (s, u_i) with capacity 1 to J, for all flights i. Similarly, any airplane can end the day by serving the flight j. Thus, we add edge (v_j, t) with capacity 1 to G, for all flights j.
- If we have extra planes, we do not have to use them. As such, we introduce a “overflow” edge (s, t) with capacity k, that can carry over all the unneeded airplanes from s directly to t.

Let J denote the resulting graph. See Figure 16.2 for an example.

Lemma 16.1.3. There is a way to perform all flights of F using at most k planes if and only if there is a feasible circulation in the network J.

Proof: Assume there is a way to perform the flights using $k' \leq k$ flights. Consider such a feasible schedule. The schedule of an airplane in this schedule defines a path π in the network J that starts at s and ends at t, and we send one unit of flow on each such path. We also send $k - k'$ units of flow on the edge (s, t). Note, that since the schedule is feasible, all legs are being served by some airplane. As such, all the “middle” edges with lower-bound 1 are being satisfied. Thus, this results is a valid circulation in J that satisfies all the given constraints.

As for the other direction, consider a feasible circulation in J. This is an integer valued circulation by the Integrality theorem. Suppose that k' units of flow are sent between s and t (ignoring the flow on
the edge \((s,t)\). All the edges of \(J\) (except \((s,t)\)) have capacity 1, and as such the circulation on all other edges is either zero or one (by the Integrality theorem). We convert this into \(k'\) paths by repeatedly traversing from the vertex \(s\) to the destination \(t\), removing the edges we are using in each such path after extracting it (as we did for the \(k\) disjoint paths problem). Since we never use an edge twice, and \(J\) is acyclic, it follows that we would extract \(k'\) paths. Each of those paths correspond to one airplane, and the overall schedule for the airplanes is valid, since all required legs are being served (by the lower-bound constraint).

\[\Box\]

Extensions and limitations. There are a lot of other considerations that we ignored in the above problem: (i) airplanes have to undergo long term maintenance treatments every once in awhile, (ii) one needs to allocate crew to these flights, (iii) schedule differ between days, and (iv) ultimately we interested in maximizing revenue (a much more fluffy concept and much harder to explicitly describe).

In particular, while network flow is used in practice, real world problems are complicated, and network flow can capture only a few aspects. More than undermining the usefulness of network flow, this emphasize the complexity of real-world problems.

16.2. Image Segmentation

In the image segmentation problem, the input is an image, and we would like to partition it into background and foreground. For an example, see Figure 16.3.
The input is a bitmap on a grid where every grid node represents a pixel. We covert this grid into a directed graph G, by interpreting every edge of the grid as two directed edges. See the figure on the right to see how the resulting graph looks like.

Specifically, the input for our problem is as follows: • A bitmap of size $N \times N$, with an associated directed graph $G = (V, E)$. • For every pixel i, we have a value $f_i \geq 0$, which is an estimate of the likelihood of this pixel to be in foreground (i.e., the larger f_i is the more probable that it is in the foreground) • For every pixel i, we have (similarly) an estimate b_i of the likelihood of pixel i to be in background.

• For every two adjacent pixels i and j we have a separation penalty p_{ij}, which is the “price” of separating i from j. This quantity is defined only for adjacent pixels in the bitmap. (For the sake of simplicity of exposition we assume that $p_{ij} = p_{ji}$. Note, however, that this assumption is not necessary for our discussion.)

Problem 16.2.1. Given input as above, partition V (the set of pixels) into two disjoint subsets F and B, such that

$$q(F, B) = \sum_{i \in F} f_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E, |F \cap \{i,j\}| = 1} p_{ij}.$$

is maximized.

We can rewrite $q(F, B)$ as:

$$q(F, B) = \sum_{i \in F} f_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E, |F \cap \{i,j\}| = 1} p_{ij} = \sum_{i \in V} (f_i + b_i) - \left(\sum_{i \in B} f_i + \sum_{j \in F} b_j + \sum_{(i,j) \in E, |F \cap \{i,j\}| = 1} p_{ij} \right).$$

Since the term $\sum_{i \in V} (f_i + b_i)$ is a constant, maximizing $q(F, B)$ is equivalent to minimizing $u(F, B)$, where

$$u(F, B) = \sum_{i \in B} f_i + \sum_{j \in F} b_j + \sum_{(i,j) \in E, |F \cap \{i,j\}| = 1} p_{ij}. \quad (16.1)$$

How do we compute this partition. Well, the basic idea is to compute a minimum cut in a graph such that its price would correspond to $u(F, B)$. Before dwelling into the exact details, it is useful to play around with some toy examples to get some intuition. Note, that we are using the max-flow algorithm as an algorithm for computing minimum directed cut.

To begin with, consider a graph having a source s, a vertex i, and a sink t. We

set the price of (s, i) to be f_i and the price of the edge (i, t) to be b_i. Clearly, there are two possible cuts in the graph, either $\{(s, i), \{i, t\}\}$ (with a price b_i) or $\{\{s\}, \{i, t\}\}$ (with a price f_i). In particular, every path of length 2 in the graph between s and t forces the algorithm computing the minimum-cut (via network flow) to choose one of the edges, to the cut, where the algorithm “prefers” the edge with lower price.
Next, consider a bitmap with two vertices i and j that are adjacent. Clearly, minimizing the first two terms in Eq. (16.1) is easy, by generating length two parallel paths between s and t through i and j. See figure on the right. Clearly, the price of a cut in this graph is exactly the price of the partition of $\{i, j\}$ into background and foreground sets. However, this ignores the separation penalty p_{ij}.

To this end, we introduce two new edges (i, j) and (j, i) into the graph and set their price to be p_{ij}. Clearly, a price of a cut in the graph can be interpreted as the value of $u(F, B)$ of the corresponding sets F and B, since all the edges in the segmentation from nodes of F to nodes of B are contributing their separation price to the cut price. Thus, if we extend this idea to the directed graph G, the minimum-cut in the resulting graph would corresponds to the required segmentation.

Let us recap: Given the directed grid graph $G = (V, E)$ we add two special source and sink vertices, denoted by s and t respectively. Next, for all the pixels $i \in V$, we add an edge $e_i = (s, i)$ to the graph, setting its capacity to be $c(e_i) = f_i$. Similarly, we add the edge $e_i' = (j, t)$ with capacity $c(e_i') = b_i$. Similarly, for every pair of vertices i, j in that grid that are adjacent, we assign the cost p_{ij} to the edges (i, j) and (j, i). Let J denote the resulting graph.

The following lemma, follows by the above discussion.

Lemma 16.2.2. A minimum cut (F, B) in J minimizes $u(F, B)$.

Using the minimum-cut max-flow theorem, we have:

Theorem 16.2.3. One can solve the segmentation problem, in polynomial time, by computing the max flow in the graph J.

16.3. Project Selection

You have a small company which can carry out some projects out of a set of projects P. Associated with each project $i \in P$ is a revenue p_i, where $p_i > 0$ is a profitable project and $p_i < 0$ is a losing project. To make things interesting, there is dependency between projects. Namely, one has to complete some “infrastructure” projects before one is able to do other projects. Namely, you are provided with a graph $G = (P, E)$ such that $(i, j) \in E$ if and only if j is a prerequisite for i.

Definition 16.3.1. A set $X \subseteq P$ is feasible if for all $i \in X$, all the prerequisites of i are also in X. Formally, for all $i \in X$, with an edge $(i, j) \in E$, we have $j \in X$.

The profit associated with a set of projects $X \subseteq P$ is $\text{profit}(X) = \sum_{i \in X} p_i$.

Problem 16.3.2 (Project Selection Problem). Select a feasible set of projects maximizing the overall profit.

The idea of the solution is to reduce the problem to a minimum-cut in a graph, in a similar fashion to what we did in the image segmentation problem.

16.3.1. The reduction

The reduction works by adding two vertices s and t to the graph G, we also perform the following modifications:

- For all projects $i \in P$ with positive revenue (i.e., $p_i > 0$) add the edge $e_i = (s, i)$ to G and set the capacity of the edge to be $c(e_i) = p_i$, where s is the added source vertex.
• Similarly, for all projects \(j \in P \), with negative revenue (i.e., \(p_j < 0 \)) add the edge \(e'_j = (j, t) \) to \(G \) and set the edge capacity to \(c(e'_j) = -p_j \), where \(t \) is the added sink vertex.

• Compute a bound on the max flow (and thus also profit) in this network: \(C = \sum_{i \in P, p_i > 0} p_i \).

• Set capacity of all other edges in \(G \) to 4\(C \) (these are the dependency edges in the project, and intuitively they are too expensive to be “broken” by a cut).

Let \(J \) denote the resulting network.

Let \(X \subseteq P \) be a set of feasible projects, and let \(X' = X \cup \{s\} \) and \(Y' = (P \setminus X) \cup \{t\} \). Consider the \(s \)-\(t \) cut \((X', Y')\) in \(J \). Note, that no edge of \(E(G) \) is in \((X', Y')\) since \(X \) is a feasible set (i.e., there is no \(u \in X' \) and \(v \in Y' \) such that \((u, v) \in E(G)\)).

Lemma 16.3.3. The capacity of the cut \((X', Y')\), as defined by a feasible project set \(X \), is \(c(X', Y') = C - \sum_{i \in X} p_i = C - \text{profit}(X) \).

Proof: The edges of \(J \) are either:

(i) original edges of \(G \) (conceptually, they have price \(+\infty\)),

(ii) edges emanating from \(s \), and

(iii) edges entering \(t \).

Since \(X \) is feasible, it follows that no edges of type (i) contribute to the cut. The edges entering \(t \) contribute to the cut the value

\[
\beta = \sum_{i \in X \text{ and } p_i < 0} -p_i.
\]

The edges leaving the source \(s \) contribute

\[
\gamma = \sum_{i \in X \text{ and } p_i > 0} p_i = \sum_{i \in P, p_i > 0} p_i - \sum_{i \in X \text{ and } p_i > 0} p_i = C - \sum_{i \in X \text{ and } p_i > 0} p_i,
\]

by the definition of \(C \).

The capacity of the cut \((X', Y')\) is

\[
\beta + \gamma = \sum_{i \in X \text{ and } p_i < 0} (-p_i) + \left(C - \sum_{i \in X \text{ and } p_i > 0} p_i \right) = C - \sum_{i \in X} p_i = C - \text{profit}(X),
\]
as claimed. \(\blacksquare \)

Lemma 16.3.4. If \((X', Y')\) is a cut with capacity at most \(C \) in \(G \), then the set \(X = X' \setminus \{s\} \) is a feasible set of projects.

Namely, cuts \((X', Y')\) of capacity \(\leq C \) in \(J \) corresponds one-to-one to feasible sets which are profitable.

Proof: Since \(c(X', Y') \leq C \) it must not cut any of the edges of \(G \), since the price of such an edge is 4\(C \). As such, \(X \) must be a feasible set. \(\blacksquare \)

Putting everything together, we are looking for a feasible set \(X \) that maximizes \(\text{profit}(X) = \sum_{i \in X} p_i \). This corresponds to a set \(X' = X \cup \{s\} \) of vertices in \(J \) that minimizes \(C - \sum_{i \in X} p_i \), which is also the cut capacity \((X', Y')\). Thus, computing a minimum-cut in \(J \) corresponds to computing the most profitable feasible set of projects.

Theorem 16.3.5. If \((X', Y')\) is a minimum cut in \(J \) then \(X = X' \setminus \{s\} \) is an optimum solution to the project selection problem. In particular, using network flow the optimal solution can be computed in polynomial time.

Proof: Indeed, we use network flow to compute the minimum cut in the resulting graph \(J \). Note, that it is quite possible that the most profitable project is still a net loss. \(\blacksquare \)
16.4. Baseball elimination

There is a baseball league taking place and it is nearing the end of the season. One would like to know which teams are still candidates to winning the season.

Example 16.4.1. There 4 teams that have the following number of wins:

- New York: 92
- Baltimore: 91
- Toronto: 91
- Boston: 90

and there are 5 games remaining (all pairs except New York and Boston).

We would like to decide if Boston can still win the season? Namely, can Boston finish the season with as many point as anybody else? (We are assuming here that at every game the winning team gets one point and the losing team gets nada.

First analysis. Observe, that Boston can get at most 92 wins. In particular, if New York wins any game then it is over since New-York would have 93 points.

Thus, to Boston to have any hope it must be that both Baltimore wins against New York and Toronto wins against New York. At this point in time, both teams have 92 points. But now, they play against each other, and one of them would get 93 wins. So Boston is eliminated!

Second analysis. As before, Boston can get at most 92 wins. All three other teams gets $X = 92 + 91 + 91 + (5 - 2)$ points together by the end of the league. As such, one of these three teams will get $\geq \lceil X/3 \rceil = 93$ points, and as such Boston is eliminated.

While the analysis of the above example is very cute, it is too tedious to be done each time we want to solve this problem. Not to mention that it is unclear how to extend these analyses to other cases.

16.4.1. Problem definition

Problem 16.4.2. The input is a set S of teams, where for every team $x \in S$, the team has w_x points accumulated so far. For every pair of teams $x, y \in S$ we know that there are g_{xy} games remaining between x and y. Given a specific team z, we would like to decide if z is eliminated?

Alternatively, is there away such that z would get as many wins as anybody else by the end of the season?

16.4.2. Solution

First, we can assume that z wins all its remaining games, and let m be the number of points z has in this case. Our purpose now is to build a network flow so we can verify that no other team must get more than m points.

To this end, let s be the source (i.e., the source of wins). For every remaining game, a flow of one unit would go from s to one of the teams playing it. Every team can have at most $m - w_x$ flow from it to the target. If the max flow in this network has value

$$\alpha = \sum_{x,y \neq z, x < y} g_{xy}$$

(which is the maximum flow possible) then there is a scenario such that all other teams gets at most m points and z can win the season. Negating this statement, we have that if the maximum flow is smaller than α then z is eliminated, since there must be a team that gets more than m points.

\[\text{2}\text{nada} = \text{nothing.}\]
Construction. Let \(S' = S \setminus \{z\} \) be the set of teams, and let

\[
\alpha = \sum_{\{x,y\} \subseteq S'} g_{xy}.
\]

(16.2)

We create a network flow \(G \). For every team \(x \in S' \) we add a vertex \(v_x \) to the network \(G \). We also add the source and sink vertices, \(s \) and \(t \), respectively, to \(G \).

For every pair of teams \(x, y \in S' \), such that \(g_{xy} > 0 \) we create a node \(u_{xy} \), and add an edge \((s, u_{xy})\) with capacity \(g_{xy} \) to \(G \). We also add the edge \((u_{xy}, v_x)\) and \((u_{xy}, v_y)\) with infinite capacity to \(G \). Finally, for each team \(x \) we add the edge \((v_x, t)\) with capacity \(m - w_x \) to \(G \). How the relevant edges look like for a pair of teams \(x \) and \(y \) is depicted on the right.

Analysis. If there is a flow of value \(\alpha \) in \(G \) then there is a way that all teams get at most \(m \) wins. Similarly, if there exists a scenario such that \(z \) ties or gets first place then we can translate this into a flow in \(G \) of value \(\alpha \). This implies the following result.

Theorem 16.4.3. Team \(z \) has been eliminated if and only if the maximum flow in \(G \) has value strictly smaller than \(\alpha \). Thus, we can test in polynomial time if \(z \) has been eliminated.

16.4.3. A compact proof of a team being eliminated

Interestingly, once \(z \) is eliminated, we can generate a compact proof of this fact.

Theorem 16.4.4. Suppose that team \(z \) has been eliminated. Then there exists a “proof” of this fact of the following form:

(A) The team \(z \) can finish with at most \(m \) wins.

(B) There is a set of teams \(\hat{S} \subset S \) so that \(\sum_{s \in \hat{S}} w_s + \sum_{\{x,y\} \subseteq \hat{S}} g_{xy} > m |\hat{S}| \).

(And hence one of the teams in \(\hat{S} \) must end with strictly more than \(m \) wins.)

Proof: If \(z \) is eliminated then the max flow in \(G \) has value \(\gamma \), which is smaller than \(\alpha \), see Eq. (16.2). By the minimum-cut max-flow theorem, there exists a minimum cut \((S, T)\) of capacity \(\gamma \) in \(G \), and let

\[
\hat{S} = \left\{ x \mid v_x \in S \right\}
\]
Claim 16.4.5. For any two teams \(x \) and \(y \) for which the vertex \(u_{xy} \) exists, we have that \(u_{xy} \in S \) if and only if both \(x \) and \(y \) are in \(\tilde{S} \).

Proof: \(x \notin \tilde{S} \) or \(y \notin \tilde{S} \) \(\Rightarrow u_{xy} \notin S \) : If \(x \) is not in \(\tilde{S} \) then \(v_x \) is in \(T \). But then, if \(u_{xy} \) is in \(S \) the edge \((u_{xy}, v_x)\) is in the cut. However, this edge has infinite capacity, which implies this cut is not a minimum cut (in particular, \((S, T)\) is a cut with capacity smaller than \(\alpha \)). As such, in such a case \(u_{xy} \) must be in \(T \). This implies that if either \(x \) or \(y \) are in \(\tilde{S} \) then it must be that \(u_{xy} \) is in \(T \). (And as such \(u_{xy} \notin S \).)

\(x \in \tilde{S} \) and \(y \in \tilde{S} \) \(\Rightarrow u_{xy} \in S \) : Assume that both \(x \) and \(y \) are in \(\tilde{S} \), then \(v_x \) and \(v_y \) are in \(T \). We need to prove that \(u_{xy} \in S \). If \(u_{xy} \in T \) then consider the new cut formed by moving \(u_{xy} \) to \(S \). For the new cut \((S', T')\) we have

\[
c(S', T') = c(S, T) - c((s, u_{xy})).
\]

Namely, the cut \((S', T')\) has a lower capacity than the minimum cut \((S, T)\), which is a contradiction. See figure on the right for this impossible cut. We conclude that \(u_{xy} \in S \). □

The above argumentation implies that edges of the type \((u_{xy}, v_x)\) can not be in the cut \((S, T)\). As such, there are two type of edges in the cut \((S, T)\): (i) \((v_x, t)\), for \(x \in \tilde{S} \), and (ii) \((s, u_{xy})\) where at least one of \(x \) or \(y \) is not in \(\tilde{S} \). As such, the capacity of the cut \((S, T)\) is

\[
c(S, T) = \sum_{x \in \tilde{S}} (m - w_x) + \sum_{\{x, y\} \subseteq \tilde{S}} g_{xy} = m |\tilde{S}| - \sum_{x \in \tilde{S}} w_x + \left(\alpha - \sum_{\{x, y\} \subseteq \tilde{S}} g_{xy} \right).
\]

However, \(c(S, T) = \gamma < \alpha \), and it follows that

\[
m |\tilde{S}| - \sum_{x \in \tilde{S}} w_x - \sum_{\{x, y\} \subseteq \tilde{S}} g_{xy} < \alpha - \alpha = 0.
\]

Namely, \(\sum_{x \in \tilde{S}} w_x + \sum_{\{x, y\} \subseteq \tilde{S}} g_{xy} > m |\tilde{S}| \), as claimed. □

Bibliography