
Chapter 7

Approximation algorithms II
By Sariel Har-Peled, November 28, 2018¬ Version: 0.5

7.1. Max Exact 3SAT
We remind the reader that an instance of 3SAT is a boolean formula, for example F = (x1+ x2+ x3)(x4+
x1 + x2), and the decision problem is to decide if the formula has a satisfiable assignment. Interestingly,
we can turn this into an optimization problem.

Max 3SAT
Instance: A collection of clauses: C1, . . . ,Cm.
Question: Find the assignment to x1, ..., xn that satisfies the maximum number of clauses.

Clearly, since 3SAT is NP-Complete it implies that Max 3SAT is NP-Hard. In particular, the
formula F becomes the following set of two clauses:

x1 + x2 + x3 and x4 + x1 + x2.

Note, that Max 3SAT is a maximization problem.

Definition 7.1.1. Algorithm Alg for a maximization problem achieves an approximation factor α if for
all inputs, we have:

Alg(G)
Opt(G) ≥ α.

In the following, we present a randomized algorithm – it is allowed to consult with a source of
random numbers in making decisions. A key property we need about random variables, is the linearity
of expectation property, which is easy to derive directly from the definition of expectation.

Definition 7.1.2 (Linearity of expectations.). Given two random variables X,Y (not necessarily inde-
pendent, we have that E

[
X + Y

]
= E

[
X
]
+ E

[
Y
]
.

Theorem 7.1.3. One can achieve (in expectation) (7/8)-approximation to Max 3SAT in polynomial
time. Namely, if the instance has m clauses, then the generated assignment satisfies (7/8)m clauses in
expectation.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Proof: Let x1, . . . , xn be the n variables used in the given instance. The algorithm works by randomly
assigning values to x1, . . . , xn, independently, and equal probability, to 0 or 1, for each one of the variables.

Let Yi be the indicator variables which is 1 if (and only if) the ith clause is satisfied by the generated
random assignment and 0 otherwise, for i = 1, . . . ,m. Formally, we have

Yi =

{
1 Ci is satisfied by the generated assignment,
0 otherwise.

Now, the number of clauses satisfied by the given assignment is Y =
∑m

i=1 Yi. We claim that E[Y] =
(7/8)m, where m is the number of clauses in the input. Indeed, we have

E
[
Y
]
= E

[m∑
i=1

Yi

]
=

m∑
i=1
E
[
Yi
]

by linearity of expectation. Now, what is the probability that Yi = 0? This is the probability that all
three literals appear in the clause Ci are evaluated to FALSE. Since the three literals are instance of three
distinct variable, these three events are independent, and as such the probability for this happening is

P
[
Yi = 0

]
=

1
2 ∗

1
2 ∗

1
2 =

1
8 .

(Another way to see this, is to observe that since Ci has exactly three literals, there is only one possible
assignment to the three variables appearing in it, such that the clause evaluates to FALSE. Now, there
are eight (8) possible assignments to this clause, and thus the probability of picking a FALSE assignment
is 1/8.) Thus,

P
[
Yi = 1

]
= 1 − P

[
Yi = 0

]
=

7
8,

and
E
[
Yi
]
= P

[
Yi = 0

]
∗ 0 + P

[
Yi = 1

]
∗ 1 = 7

8 .

Namely, E[# of clauses sat] = E[Y] =
∑m

i=1 E[Yi] = (7/8)m. Since the optimal solution satisfies at most
m clauses, the claim follows.

Curiously, Theorem 7.1.3 is stronger than what one usually would be able to get for an approximation
algorithm. Here, the approximation quality is independent of how well the optimal solution does (the
optimal can satisfy at most m clauses, as such we get a (7/8)-approximation. Curiouser and curiouser­,
the algorithm does not even look on the input when generating the random assignment.

Håstad [Hås01] proved that one can do no better; that is, for any constant ε > 0, one can not
approximate 3SAT in polynomial time (unless P = NP) to within a factor of 7/8 + ε. It is pretty
amazing that a trivial algorithm like the above is essentially optimal.

7.2. Approximation Algorithms for Set Cover

7.2.1. Guarding an Art Gallery

­“Curiouser and curiouser!” Cried Alice (she was so much surprised, that for the moment she quite forgot how to
speak good English). – Alice in wonderland, Lewis Carol

2

You are given the floor plan of an art gallery, which is a two dimen-
sional simple polygon. You would like to place guards that see the whole
polygon. A guard is a point, which can see all points around it, but it
can not see through walls. Formally, a point p can see a point q, if the
segment pq is contained inside the polygon. See figure on the right, for
an illustration of how the input looks like.

p

A visibility polygon at p (depicted as the yellow polygon on the left)
is the region inside the polygon that p can see. We would like to find the
minimal number of guards needed to guard the given art-gallery? That is,
all the points in the art gallery should be visible from at least one guard
we place.

The art-gallery problem is a set-cover problem. We have a ground set
(the polygon), and family of sets (the set of all visibility polygons), and

the target is to find a minimal number of sets covering the whole polygon.
It is known that finding the minimum number of guards needed is NP-Hard. No approximation is

currently known. It is also known that a polygon with n corners, can be guarded using n/3 + 1 guards.
Note, that this problem is harder than the classical set-cover problem because the number of subsets is
infinite and the underlining base set is also infinite.

An interesting open problem is to find a polynomial time approximation algorithm, such that given
P, it computes a set of guards, such that #guards ≤

√
nkopt , where n is the number of vertices of the

input polygon P, and kopt is the number of guards used by the optimal solution.

7.2.2. Set Cover
The optimization version of Set Cover, is the following:

Set Cover
Instance: (S,F):

S - a set of n elements
F - a family of subsets of S, s.t.

⋃
X∈F X = S.

Question: The set X ⊆ F such that X contains as few sets as possible, and X covers S.
Formally,

⋃
X∈X X = S.

The set S is sometime called the ground set, and a pair (S,F) is either called a set system or a
hypergraph. Note, that Set Cover is a minimization problem which is also NP-Hard.

Example 7.2.1. Consider the set S = {1,2,3,4,5} and the following family of subsets

F = {{1,2,3}, {2,5}, {1,4}, {4,5}} .

Clearly, the smallest cover of S is Xopt = {{1,2,3}, {4,5}}.

The greedy algorithm GreedySetCover for this problem is depicted in Figure 7.1. Here, the algorithm
always picks the set in the family that covers the largest number of elements not covered yet. Clearly,
the algorithm is polynomial in the input size. Indeed, we are given a set S of n elements, and m subsets.
As such, the input size is at least Ω(m + n) (and at most of size O(mn)), and the algorithm takes time
polynomial in m and n. Let Xopt = {V1, . . . ,Vk} be the optimal solution.

3

GreedySetCover(S,F)
X← ∅; T ← S
while T is not empty do

U ← set in F covering largest
of elements in T

X← X ∪ {U}
T ← T \U

return X.

Figure 7.1

Let Ti denote the elements not covered in the beginning ith iteration of GreedySetCover, where
T1 = S. Let Ui be the set added to the cover in the ith iteration, and αi = |Ui ∩ Ti | be the number of
new elements being covered in the ith iteration.

Claim 7.2.2. We have α1 ≥ α2 ≥ . . . ≥ αk ≥ . . . ≥ αm.

Proof: If αi < αi+1 then Ui+1 covers more elements than Ui and we can exchange between them, as we
found a set that in the ith iteration covers more elements that the set used by GreedySetCover. Namely,
in the ith iteration we would use Ui+1 instead of Ui. This contradicts the greediness of GreedySetCover
of choosing the set covering the largest number of elements not covered yet. A contradiction.

Claim 7.2.3. We have αi ≥ |Ti | /k. Namely, |Ti+1 | ≤ (1 − 1/k) |Ti |.

Proof: Consider the optimal solution. It is made out of k sets and it covers S, and as such it covers
Ti ⊆ S. This implies that one of the subsets in the optimal solution cover at least 1/k fraction of the
elements of Ti. Finally, the greedy algorithm picks the set that covers the largest number of elements of
Ti. Thus, Ui covers at least αi ≥ |Ti |/k elements.

As for the second claim, we have that |Ti+1 | = |Ti | − αi ≤ (1 − 1/k) |Ti |.

Theorem 7.2.4. The algorithm GreedySetCover generates a cover of S using at most O(k log n) sets of
F, where k is the size of the cover in the optimal solution.

Proof: We have that |Ti | ≤ (1− 1/k) |Ti−1 | ≤ (1− 1/k)i |T0 | = (1− 1/k)in. In particular, for M = d2k ln ne
we have

|TM | ≤

(
1 − 1

k

) M

n ≤ exp
(
−

1
k

M
)

n = exp
(
−
d2k ln ne

k

)
n ≤

1
n
< 1,

since 1 − x ≤ e−x, for x ≥ 0. Namely, |TM | = 0. As such, the algorithm terminates before reaching the
Mth iteration, and as such it outputs a cover of size O(k log n), as claimed.

7.2.3. Lower bound
The lower bound example is depicted in the following figure.

4

Y4

Z4

X1 X2 X3 X4

We provide a more formal description of this lower bound next, and prove that it shows Ω(log n)
approximation to GreedySetCover.

We want to show here that the greedy algorithm analysis is tight. To this end, consider the set
system Λi = (Si,Fi), where Si = Yi ∪ Zi, Yi = {y1, . . . , y2i−1} and Zi = {z1, . . . , z2i−1}. The family of sets Fi
contains the following sets

X j = {y2j−1, . . . , y2j−1, z2j−1, . . . , z2j−1} ,

for j = 1, . . . , i. Furthermore, Fi also contains the two special sets Yi and Zi. Clearly, minimum set cover
for Λi is the two sets Yi and Zi.

However, sets Yi and Zi have size 2i − 1. But, the set Xi has size

|Xi | = 2
(
2i − 1 − 2i−1 + 1

)
= 2i,

and this is the largest set in Λi. As such, the greedy algorithm GreedySetCover would pick Xi as first set
to its cover. However, once you remove Xi from Λi (and from its ground set), you remain with the set
system Λi−1. We conclude that GreedySetCover would pick the sets Xi,Xi−1, . . . ,X1 to the cover, while
the optimal cover is by two sets. We conclude:

Lemma 7.2.5. Let n = 2i+1 − 2. There exists an instance of Set Cover of n elements, for which the
optimal cover is by two sets, but GreedySetCover would use i = blg nc sets for the cover. That is,
GreedySetCover is a Θ(log n) approximation to SetCover.

7.2.4. Just for fun – weighted set cover

Weighted Set Cover
Instance: (S,F, ρ):

S: a set of n elements
F: a family of subsets of S, s.t.

⋃
X∈F X = S.

ρ(·): A price function assigning price to each set in F.
Question: The set X ⊆ F, such that X covers S. Formally,

⋃
X∈X X = S, and ρ(X) =

∑
X∈X ρ(X)

is minimized.

The greedy algorithm in this case, WGreedySetCover, repeatedly picks the set that pays the least
cover each element it cover. Specifically, if a set X ∈ F covered t new elements, then the average price
it pays per element it cover is α(X) = ρ(X)/t. WGreedySetCover as such, picks the set with the lowest
average price. Our purpose here to prove that this greedy algorithm provides O(log n) approximation.

7.2.4.1. Analysis

Let Ui be the set of elements that are not covered yet in the end of the ith iteration. As such, U0 = S.
At the beginning of the ith iteration, the average optimal cost is αi = ρ(opt)/ni, where opt is the
optimal solution and ni = |Ui−1 | is the number of uncovered elements.

5

Lemma 7.2.6. We have that:
(A) α1 ≤ α2 ≤ · · · .
(B) For i < j, we have 2αi ≤ α j only if n j ≤ ni/2.

Proof: (A) is hopefully obvious – as the number of elements not covered decreases, the average price to
cover the remaining elements using the optimal solution goes up.

(B) 2αi ≤ α j implies that 2ρ(opt)/ni ≤ ρ(opt)/n j , which implies in turn that 2n j ≤ ni.

So, let k be the first iteration such that nk ≤ n/2. The basic idea is that total price that WGreedySet-
Cover paid during these iterations is at most 2ρ(opt). This immediately implies O(log n) iteration, since
this can happen at most O(log n) times till the ground set is fully covered.

To this end, we need the following technical lemma.

Lemma 7.2.7. Let Ui−1 be the set of elements not yet covered in the beginning of the ith iteration, and
let αi = ρ(opt)/ni be the average optimal cost per element. Then, there exists a set X in the optimal
solution, with lower average cost; that is, ρ(X)/|Ui−1 ∩ X | ≤ αi.

Proof: Let X1, . . . ,Xm be the sets used in the optimal solution. Let s j =
��Ui−1 ∩ X j

��, for j = 1, . . . ,m, be
the number of new elements covered by each one of these sets. Similarly, let ρ j = ρ

(
X j
)
, for j = 1, . . . ,m.

The average cost of the jth set is ρ j/s j (it is +∞ if s j = 0). It is easy to verify that

m
min
j=1

ρ j

s j
≤

∑m
j=1 ρ j∑m
j=1 s j

=
ρ(opt)∑m

j=1 s j
≤
ρ(opt)
|Ui−1 |

= αi .

The first inequality follows as a/b ≤ c/d (all positive numbers), then a
b
≤

a + c
b + d

≤
c
d

. In particular, for

any such numbers min
(a

b
,

c
d

)
≤

a + c
b + d

, and applying this repeatedly implies this inequality. The second
inequality follows as

∑m
j=1 s j ≥ |Ui−1 |. This implies that the optimal solution must contain a set with an

average cost smaller than the average optimal cost.

Lemma 7.2.8. Let k be the first iteration such that nk ≤ n/2. The total price of the sets picked in
iteration 1 to k − 1, is at most 2ρ(opt).

Proof: By Lemma 7.2.7, at each iteration the algorithm picks a set with average cost that is smaller
than the optimal average cost (which goes up in each iteration). However, the optimal average cost
iterations, 1 to k − 1, is at most twice the starting cost, since the number of elements not covered is
at least half the total number of elements. It follows, that the for each element covered, the greedy
algorithm paid at most twice the initial optimal average cost. So, if the number of elements covered by
the beginning of the kth iteration is β ≥ n/2, then the total price paid is 2α1β = 2(ρ(opt)/n)β ≤ 2ρ(opt),
implying the claim.

Theorem 7.2.9. WGreedySetCover computes a O(log n) approximation to the optimal weighted set
cover solution.

Proof: WGreedySetCover paid at most twice the optimal solution to cover half the elements, by Lemma 7.2.8.
Now, you can repeat the argument on the remaining uncovered elements. Clearly, after O(log n) such
halving steps, all the sets would be covered. In each halving step, WGreedySetCover paid at most twice
the optimal cost.

6

7.3. Biographical Notes
The Max 3SAT remains hard in the “easier” variant of MAX 2SAT version, where every clause has 2
variables. It is known to be NP-Hard and approximable within 1.0741 [FG95], and is not approximable
within 1.0476 [Hås01]. Notice, that the fact that MAX 2SAT is hard to approximate is surprising as
2SAT can be solved in polynomial time (!).

Bibliography
[FG95] U. Feige and M. Goemans. Approximating the value of two power proof systems, with applica-

tions to max 2sat and max dicut. In ISTCS ’95: Proceedings of the 3rd Israel Symposium on
the Theory of Computing Systems (ISTCS’95), page 182, Washington, DC, USA, 1995. IEEE
Computer Society.

[Hås01] J. Håstad. Some optimal inapproximability results. J. Assoc. Comput. Mach., 48(4):798–859,
jul 2001.

7

http://www.acm.org/jacm/

	Approximation algorithms II
	Max Exact 3SAT
	Approximation Algorithms for Set Cover
	Guarding an Art Gallery
	Set Cover
	Lower bound
	Just for fun – weighted set cover

	Biographical Notes

	Bibliography

