
Chapter 5

Dynamic programming II - The Recursion
Strikes Back
By Sariel Har-Peled, November 28, 2018¬ Version: 0.4

“No, mademoiselle, I don’t capture elephants. I content myself with living among them. I like them. I like
looking at them, listening to them, watching them on the horizon. To tell you the truth, I’d give anything
to become an elephant myself. That’ll convince you that I’ve nothing against the Germans in particular:
they’re just men to me, and that’s enough.”

– – The roots of heaven, Romain Gary.

5.1. Optimal search trees
Given a binary search tree T, the time to search for an element x, that is stored in T, is O(1 + depth(T, x)),
where depth(T, x) denotes the depth of x in T (i.e., this is the length of the path connecting x with the
root of T).

12

4 32

21 45 4 21

12

32

45

Two possible search trees for the set
A = [4,12,21,32,45].

Problem 5.1.1. Given a set of n (sorted) keys A[1 . . . n], build
the best binary search tree for the elements of A.

Note, that we store the values in the internal node of the
binary trees. The figure on the right shows two possible search
trees for the same set of numbers. Clearly, if we are accessing the
number 12 all the time, the tree on the left would be better to
use than the tree on the right.

Usually, we just build a balanced binary tree, and this is good enough. But assume that we have
additional information about what is the frequency in which we access the element A[i], for i = 1, . . . ,n.
Namely, we know that A[i] is going be accessed f [i] times, for i = 1, . . . ,n.

In this case, we know that the total search time for a tree T is S(T) =
n∑

i=1
(depth(T, i) + 1)f [i], where

depth(T, i) is the depth of the node in T storing the value A[i]. Assume that A[r] is the value stored in
the root of the tree T. Clearly, all the values smaller than A[r] are in the subtree leftT, and all values
larger than r are in rightT. Thus, the total search time, in this case, is

S(T) =
r−1∑
i=1
(depth(leftT, i) + 1)f [i] +

price of access to root︷ ︸︸ ︷
n∑

i=1
f [i] +

n∑
i=r+1
(depth(rightT, i) + 1)f [i].

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Observe, that if T is the optimal search tree for the access frequencies f [1], . . . , f [n], then the subtree
leftT must be optimal for the elements accessing it (i.e., A[1 . . . r − 1] where r is the root).

Thus, the price of T is

S(T) = S(leftT) + S(rightT) +

n∑
i=1

f [i],

where S(Q) is the price of searching in Q for the frequency of elements stored in Q.

CompBestTreeI (A[i . . . j], f [i . . . j])
for r = i . . . j do

Tle f t ← CompBestTreeI(A[i . . . r − 1], f [i . . . r − 1])
Tright ← CompBestTreeI(A[r + 1 . . . j], f [r + 1 . . . j])
Tr ← Tree

(
Tle f t , A[r] , Tright

)
Pr ← S(Tr)

return cheapest tree out of Ti, . . . ,Tj .

CompBestTree (A[1 . . . n], f [1 . . . n])
return CompBestTreeI(A[1 . . . n], f [1 . . . n])

This recursive formula naturally gives
rise to a recursive algorithm, which is
depicted on the right. The naive imple-
mentation requires O(n2) time (ignoring
the recursive call). But in fact, by a
more careful implementation, together
with the tree T, we can also return the
price of searching on this tree with the
given frequencies. Thus, this modified
algorithm. Thus, the running time for
this function takes O(n) time (ignoring
recursive calls). The running time of
the resulting algorithm is

α(n) = O(n) +
n−1∑
i=0
(α(i) + α(n − i − 1)),

and the solution of this recurrence is O(n3n).
We can, of course, improve the running time using memoization. There are only O(n2) different

recursive calls, and as such, the running time of CompBestTreeMemoize is O(n2) · O(n) = O(n3).
Theorem 5.1.2. One can compute the optimal binary search tree in O

(
n3) time using O

(
n2) space.

A further improvement raises from the fact that the root location is “monotone”. Formally, if R[i, j]
denotes the location of the element stored in the root for the elements A[i . . . j] then it holds that
R[i, j − 1] ≤ R[i, j] ≤ R[i, j + 1]. This limits the search space, and we can be more efficient in the search.
This leads to O

(
n2) algorithm. Details are in Jeff Erickson class notes.

5.2. Optimal Triangulations
Given a convex polygon P in the plane, we would like to find the triangulation of P of minimum total
length. Namely, the total length of the diagonals of the triangulation of P, plus the (length of the)
perimeter of P are minimized. See Figure 5.1.
Definition 5.2.1. A set S ⊆ Rd is convex if for any to x, y ∈ S, the segment xy is contained in S.

A convex polygon is a closed cycle of segments, with no vertex pointing inward. Formally, it is a
simple closed polygonal curve which encloses a convex set.

A diagonal is a line segment connecting two vertices of a polygon which are not adjacent. A
triangulation is a partition of a convex polygon into (interior) disjoint triangles using diagonals.

Observation 5.2.2. Any triangulation of a convex polygon with n vertices is made out of exactly n − 2
triangles.

2

Figure 5.1: A polygon and two possible triangulations of the polygon.

Our purpose is to find the triangulation of P that has the mini-
mum total length. Namely, the total length of diagonals used in the
triangulation is minimized. We would like to compute the optimal
triangulation using divide and conquer. As the figure on the right
demonstrate, there is always a triangle in the triangulation, that
breaks the polygon into two polygons. Thus, we can try and guess
such a triangle in the optimal triangulation, and recurse on the two
polygons such created. The only difficulty, is to do this in such a way
that the recursive subproblems can be described in succinct way.

1

2

3

4
5

6

7

8

To this end, we assume that the polygon is specified as list of vertices
1 . . . n in a clockwise ordering. Namely, the input is a list of the vertices
of the polygon, for every vertex, the two coordinates are specified. The
key observation, is that in any triangulation of P, there exist a triangle
that uses the edge between vertex 1 and n (red edge in figure on the left).

In particular, removing the triangle using the edge 1 − n leaves us
with two polygons which their vertices are consecutive along the original
polygon.

Let M[i, j] denote the price of triangulating a polygon starting at vertex i and ending at vertex
j, where every diagonal used contributes its length twice to this quantity, and the perimeter edges
contribute their length exactly once. We have the following “natural” recurrence:

M[i, j] =


0 j ≤ i
0 j = i + 1
mini<k< j(∆(i, j, k) + M[i, k] + M[k, j]) Otherwise

.

Where Dist(i, j) =
√
(x[i] − x[j])2 + (y[i] − y[j])2 and ∆(i, j, k) = Dist(i, j) + Dist(j, k) + Dist(i, k), where

the ith point has coordinates (x[i], y[i]), for i = 1, . . . ,n. Note, that the quantity we are interested in is
M[1,n], since it the triangulation of P with minimum total weight.

Using dynamic programming (or just memoization), we get an algorithm that computes optimal
triangulation in O(n3) time using O(n2) space.

3

5.3. Matrix Multiplication
We are given two matrix: (i) A is a matrix with dimensions p × q (i.e., p rows and q columns) and (ii)
B is a matrix of size q × r. The product matrix AB, with dimensions p × r, can be computed in O(pqr)
time using the standard algorithm.

A 1000 × 2
B 2 × 1000
C 1000 × 2

Things becomes considerably more interesting when we have to multiply a chain for
matrices. Consider for example the three matrices A,B and C with dimensions as listed
on the left. Computing the matrix ABC = A(BC) requires 2 ·1000 ·2+1000 ·2 ·2 = 8,000
operations. On the other hand, computing the same matrix using (AB)C requires

1000 · 2 · 1000 + 1000 · 1000 · 2 = 4,000,000. Note, that matrix multiplication is associative, and as such
(AB)C = A(BC).

Thus, given a chain of matrices that we need to multiply, the exact ordering in which we do the
multiplication matters as far to multiply the order is important as far as efficiency.

Problem 5.3.1. The input is n matrices M1, . . . ,Mn such that Mi is of size D[i − 1] × D[i] (i.e., Mi has
D[i − 1] rows and D[i] columns), where D[0 . . . n] is array specifying the sizes. Find the ordering of
multiplications to compute M1 · M2 · · ·Mn−1 · Mn most efficiently.

Again, let us define a recurrence for this problem, where M[i, j] is the amount of work involved in
computing the product of the matrices Mi · · ·Mj . We have

M[i, j] =


0 j = i
D[i − 1] · D[i] · D[i + 1] j = i + 1
mini≤k< j(M[i, k] + M[k + 1, j] + D[i − 1] · D[k] · D[j]) j > i + 1.

Again, using memoization (or dynamic programming), one can compute M[1,n], in O(n3) time, using
O(n2) space.

5.4. Longest Ascending Subsequence
Given an array of numbers A[1 . . . n] we are interested in finding the longest ascending subsequence.
For example, if A = [6,3,2,5,1,12] the longest ascending subsequence is 2,5,12. To this end, let M[i]
denote longest increasing subsequence having A[i] as the last element in the subsequence. The recurrence
on the maximum possible length, is

M[n] =


1 n = 1
1 + max

1≤k<n,A[k]<A[n]
M[k] otherwise.

The length of the longest increasing subsequence is maxn
i=1 M[i]. Again, using dynamic programming,

we get an algorithm with running time O(n2) for this problem. It is also not hard to modify the
algorithm so that it outputs this sequence (you should figure out the details of this modification). A
better O(n log n) solution is possible using some data-structure magic.

4

5.5. Pattern Matching

tidbitTidbit 5.5.1. Magna Carta or Magna Charta - the great charter that King John of England was forced
by the English barons to grant at Runnymede, June 15, 1215, traditionally interpreted as guaranteeing
certain civil and political liberties.

Assume you have a string S = ”Magna Carta” and a pattern P = ”?ag ∗ at ∗ a ∗ ” where “?” can
match a single character, and “*” can match any substring. You would like to decide if the pattern
matches the string.

We are interested in solving this problem using dynamic programming. This is not too hard since
this is similar to the edit-distance problem that was already covered.

IsMatch(S[1 . . . n],P[1 . . .m])
if m = 0 and n = 0 then return TRUE.
if m = 0 then return FALSE.
if n = 0 then

if P[1 . . .m] is all stars then return TRUE
else return FALSE

if (P[m] = ’?’) then
return IsMatch(S[1 . . . n − 1],P[1 . . .m − 1])

if (P[m] , ’*’) then
if P[m] , S[n] then return FALSE
else return IsMatch(S[1 . . . n − 1],P[1 . . .m − 1])

for i = 0 to n do
if IsMatch(S[1 . . . i],P[1 . . .m − 1]) then

return TRUE
return FALSE

The resulting code is depicted on the
left, and as you can see this is pretty te-
dious. Now, use memoization together
with this recursive code, and you get an
algorithm with running time O

(
mn2) and

space O(nm), where the input string of
length n, and m is the length of the pat-
tern.
Being slightly more clever, one can get
a faster algorithm with running time
O(nm).
BTW, one can do even better. A O(m+n)
time is possible but it requires Knuth-
Morris-Pratt algorithm, which is a fast
string matching algorithm.

5.6. Slightly faster TSP algorithm via dynamic programming

TSP: Traveling Salesperson Problem
Instance: A graph G = (V,E) with non-negative edge costs/lengths. Cost c(e) for each edge
e ∈ E.
Question: Find a tour of minimum cost that visits each node.

No polynomial time algorithm known for TSP– the problem is NP-Hard.
Even an exponential Time algorithm requires some work. Indeed, there are n! potential TSP tours.

Clearly, n! ≤ nn = exp(n ln n) and n! ≥ (n/2)n/2 = exp((n/2) ln(n/2)). Using Stirling’s formula, we have
n! '
√

n(n/e)n, which gives us a somewhat tighter estimate n! = Θ(2cn log n) for some constant c > 1.
So, naively, any running time algorithm would have running time (at least) Ω(n!). Can we do better?

Can we get a ≈ 2O(n) running time algorithm in this case?

Towards a Recursive Solution.
(A) Order the vertices of V in some arbitrary order: v1, v2, . . . , vn.
(B) opt(S): optimum TSP tour for the vertices S ⊆ V in the graph restricted to S. We would like to

compute opt(V).

5

Figure 5.2: A drawing of the Mona Lisa by solving a TSP instance. The figure on the right is the TSP
in the eyes region.

Figure 5.3: A certain country and its optimal TSP tour.

Can we compute opt(S) recursively?
(A) Say v ∈ S. What are the two neighbors of v in optimum tour in S?
(B) If u,w are neighbors of v in an optimum tour of S then removing v gives an optimum path from u

to w visiting all nodes in S − {v}.
Path from u to w is not a recursive subproblem! Need to find a more general problem to allow

recursion.

We start with a more general problem: TSP Path.

TSP Path
Instance: A graph G = (V,E) with non-negative edge costs/lengths(c(e) for edge e) and two
nodes s, t.
Question: Find a path from s to t of minimum cost that visits each node exactly once.

We can solve the regular TSP problem using this problem.

6

We define a recursive problem for the optimum TSP Path problem, as follows:

opt(u, v,S) : optimum TSP Path from u to v in the graph restricted to S s.t. u, v ∈ S.

(A) What is the next node in the optimum path from u to v?
(B) Suppose it is w. Then what is opt(u, v,S)?
(C) opt(u, v,S) = c(u,w) + opt(w, v,S − {u})
(D) We do not know w! So try all possibilities for w.

A Recursive Solution.
(A) opt(u, v,S) = minw∈S,w,u,v(c(u,w) + opt(w, v,S − {u}))
(B) What are the subproblems for the original problem opt(s, t,V)? For every subset S ⊆ V, we have

the subproblem opt(u, v,S) for u, v ∈ S.
As usual, we need to bound the number subproblems in the recursion:
(A) number of distinct subsets S of V is at most 2n

(B) number of pairs of nodes in a set S is at most n2

(C) hence number of subproblems is O(n22n)

Exercise 5.6.1. Show that one can compute TSP using above dynamic program in O(n32n) time and
O(n22n) space.

Lemma 5.6.2. Given a graph G with n vertices, one can solve TSP in O(n32n) time.

The disadvantage of dynamic programming solution is that it uses a lot of memory.

Bibliography

7

	Dynamic programming II - The Recursion Strikes Back
	Optimal search trees
	Optimal Triangulations
	Matrix Multiplication
	Longest Ascending Subsequence
	Pattern Matching
	Slightly faster TSP algorithm via dynamic programming

	Bibliography

