CS 473: Algorithms, Fall 2018

Network flow, duality and
Linear Programming

Lecture 20
November 5, 2018
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Rounding thingies |

Let G = (V, E) be a given graph. Consider the following:

max E Ty,

veV
such that  «, € {0,1} Yv € V
x, +x, <1 Yvu € E.

The above IP (Integer program) solves the problem of:
@ Computing largest clique in G.
@ Computing largest edge cover in G.
© Computing largest vertex cover in G.
© Computing largest clique cover in G.
© Computing largest independent set in G.
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20.1: Network flow via linear
programming



2011 Network flow: Problem definition



Network flow

@ Transfer as much “merchandise” as possible from one point to
another.

@ Wireless network, transfer a large file from s to t.

© Limited capacities.
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Network: Definition

© Given a network with capacities on each connection.

@ Q: How much “flow” can transfer from source s to a sink t7

© The flow is splitable.

© Network examples: water pipes moving water. Electricity
network.

© Internet is packet base, so not quite splitable.

e G = (V,E): a directed graph.
e V(u,v) € E(G): capacity c(u,v) > 0,
° (u,v) ¢ G = c(u,v) =0.

@ s: source vertex, t: target sink vertex.

e G, s, tand ¢(-): form flow network or network.
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Network Example

@ All flow from the source ends up in the sink.
© Flow on edge: non-negative quantity < capacity of edge.
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Flow definition

flow in network is a function f(-,:) : E(G) — R:
© Bounded by capacity:
V(u,v) €E  f(u,v) < e(u,v).
© Anti symmetry:
Vu, v F(u,v) = —f(v,u).
@ Two special vertices: (i) the source s and the sink ¢.

Q@ Conservation of flow (Kirchhoff's Current Law):

Yu € V\ {s,t} > fu,v) =0.
flow/value of f: |f| = Z f(s,v).

veEV
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Problem: Max Flow

© Flow on edge can be negative (i.e., positive flow on edge in
other direction).

Problem (Maximum flow)

Given a network G find the maximum flow in G. Namely, compute
a legal flow f such that | f| is maximized.
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20 1 2 Network flow via linear programming
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Network flow via linear programming

Input: G = (V, E) with source s and sink t, and capacities c(-) on
the edges. Compute max flow in G.
V(u,v) € E 0 < Ty o
Tysy < C(u — v)

Vv € V \ {s, t} Z Ty — Z Ty < 0

(uw,v)EE (v,w)EE
Z Ly—v — Z Ly—w 2 0
(u,v)EE (vyw)EE
maximizing Z(S’U)GE Ts s

11/59
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2013 Min-Cost Network flow via linear

programming
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Min cost flow

nput:

G = (V, E): directed graph.

[s:] source.

t: sink

c(-): capacities on edges,

¢: Desired amount (value) of flow.
K(+): Cost on the edges.

| A

Definition - cost of flow

cost of flow f: cost(f) = Z k(e) * f(e).
ecE
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Min cost flow problem

minimum-cost s-t flow problem: compute the flow f of min cost
that has value ¢.

min-cost circulation problem

Instead of ¢ we have lower-bound £(-) on edges.
(All flow that enters must leave.)

If we can solve min-cost circulation =——> can solve min-cost flow. l
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Rounding thingies Il

Let G = (V, E) be a given graph. Consider the following:

max E Ty,

veV
such that  «, € {0,1} Yv € V
x, +x, <1 Yvu € E.

In the worst case, the optimal solution to the above IP is:

Q1

Qo |V|
O [E|
Q oc.
Q 0.
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Rounding thingies Il

Let G = (V, E) be a given graph. Consider the following LP:

max E Ty,

veV
such that 0<z, <1 Yv € V
x, +x, <1 VYvu € E

In the worst case, the optimal solution to the above E is:

0>1

Q@ >|V|/2

o > [E[/2

Q oc.

Q 0.
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Rounding thingies IV

Consider an optimization problem (a maximization problem) on a
graph, that can be written as an IP.

al: optimal solution of the IP.

a: optimal solution of the LP (aka fractional solution).

We always have that:

al > a.

ol

I

.

2cv.
I

IAINA

o.
I'_—a<2.

(8%
(8%
(8%
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Rounding thingies V

Consider an optimization problem (a maximization problem) on a
graph with n vertices and m edges, that can be written as an IP.
al: optimal solution of the IP.

a: optimal solution of the LLP.

We always have that:

Q@ a/al < 1.
Q@ a/al <n.
Q Always a/a’f > m. Unless m < n®/2 and then
a/al > /m/n.
@ In the worst case a/a! > n /2, but it can be much worse.
Q@ a/al >1.

18/59
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20.2: Duality and Linear
Programming
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© Every linear program L has a dual linear program L’.

@ Solving the dual problem is essentially equivalent to solving the
primal linear program original LP.

© Lets look an example..

20/59

21



20.2.1: Duality by Example
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Duality by Example

max z = 4x; + x5 + 3x3
s.t. T+ 4y <1
3y —x2+ 23 <3

L1, T24 L3 Z 0

@ 7: maximal possible value of target function.
@ Any feasible solution = a lower bound on 7).

© In above: 1 = 1,5 = x3 = 0 is feasible, and implies z = 4
and thus n > 4.

Q =22 =0, x3 =3 isfeasible — n>2=09.
© How close this solution is to opt? (i.e., )
Q If very close to optimal — might be good enough. Maybe stop?
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Duality by Example: Il

max z = 4x; + x5 + 3x3
s.t. T+ 4y <1
3y —x2+ 23 <3

L1, T24 L3 Z 0

© Add the first inequality (multiplied by 2) to the second inequality
(multiplied by 3):

+3(3x1 — x2 + x3) < 3(3).

© The resulting inequality is
11.’131 -+ 5.’132 -+ 3283 S 11. (1)
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Duality by Example: Il

max z = 4x; + x5 + 3x3
s.t. T, +4xy <1
3r; —xy +x3 < 3
T1, T2, T3 > 0

got 11z + 5o + 33 < 11.
inequality must hold for any feasible solution of L.

Objective: z = 4x1 4+ x2 + 3x3 and x;1, 2 and x5 are all
non-negative.

Inequality above has larger coefficients than objective (for
corresponding variables)
© For any feasible solution:
z=4x1 + 3 + 3x3 < 11z + 55 + 33 < 11,
24/59
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Duality by Example: Il

max z = 4x; + x5 + 3x3
s.t. T+ 4y <1
3y —x2+ 23 <3
T1, T2, T3 > 0

© For any feasible solution:
z=4x; + x5 + 3x3 < 11z + 55 + 323 < 11,
@ Opt solution is LP L is somewhere between 9 and 11.
© Multiply first inequality by y1, second inequality by y> and add

them up:
y1(x1 + 4, ) < y1(1)
+ y2(3xy - T2 + xz3 )< y2(3)
(y1 +3y2)x1 + (Qyr —y2)xz2 + yoxzs < y1 + 3y
25/59
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Duality by Example: IV

max z = 4x; + x5 + 3x3
s.t. T+ 4y <1
3y —x2+ 23 <3

L1, T24 L3 Z 0

Q (y1 +3y2)T1 + (4y1 — y2)T2 + Y223 < Y1 + 3y2.

@ Compare to target function —
require expression bigger than
target function in each
variable.

—> z =4x7 + T2 + 33 <
(y1 4 3y2)x1 + (4y1 — y2)2 + y2xs < y1 + 3yo.
26,59

27



Duality by Example: IV

max z = 4x; + x5 + 3x3
s.t. T+ 4y <1
3y —x2+ 23 <3

L1, T24 L3 Z 0

Q (y1 +3y2)T1 + (4y1 — y2)T2 + Y223 < Y1 + 3y2.

@ Compare to target function —
require expression bigger than
target function in each
variable.

—> z =4x7 + T2 + 33 <
(y1 4 3y2)x1 + (4y1 — y2)2 + y2xs < y1 + 3yo.
26,59

28



Duality by Example: IV

max z = 4x; + x5 + 3x3
s.t. T+ 4y <1
3y —x2+ 23 <3

L1, T24 L3 Z 0
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1 < 4y, —ys require expression bigger than
< target function in each
> Y2, .
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Duality by Example: IV

rimal LP: Pual LP: L
max 2z = 4x, + x> + 3x3 min  y; + 3y2
s.t. xr1+4x, <1 s.t. y1 + 3y > 4
31 — T2 +x3 < 3 4y, —y2 > 1
Z1, T2, 23 > 0 y2 >3
Y1,y2 > 0.

© Best upper bound on 1 (max value of z) then solve the LP L.
@ L: Dual program to L.

© opt. solution of Lis an upper bound on optimal solution for L.

27/59

20



Primal program/Dual program

n m
max Z CjT; minz biy;
j=1 1:_1
n m
s.t. Zaijacj S b,;, s.t. Za’ijyi Z Cj,
j=1 - =1
fore =1,...,m, forg =1,...,n,
€j > 0, Yy > 0,
foryg=1,...,n. fori =1,...,m.

28,59
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Primal program/Dual program

Primal Primal
Dual variables rima Min v
variables ;20 x,20 x;320 Xy 2 relation
3120 Ay a2 ays Ain = b,
y220 azy Az az3 [ = b,
Ym 20 1 Q2 A3 Qmn = b
Dual Relation v Y % [\
Max z c [ [ C,
T . T
max c x min y b
T T
s.t. Az <b. s.t. Yy A>c.

y > 0.

D
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Primal program/Dual program

What happens when you take the dual of the dual?

n m
max Z C;T; minz b;y;
j=1 =1
n m
s.t. Zaija:j S b,’, s.t. Za’ijyi Z Cj,
j=1 =1

fore=1,...,m, forg =1,...

xz; > 0, y; > 0,
fore=1,...,m.

7n7

foryg =1,...,n.

30,59
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Primal program / Dual program in standard form

n
max Z cj mj max Z ( _bz)yz
J=1 =1

n m
s.t. Zaijmj < b;, s.t. Z(_aij)yi < —c¢j,
j=1 i=1
fore =1,...,m,
L Z Oa
forg=1,...,n.

fory =1,...,n,
inO,

fore =1,...,m.

31/59
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Dual program in standard form

m n
max § (_bz)yz min E —CjI;
=1 j=1

m n
s.t. Z(—am)yz S —Cj, s.t. Z(_a’ij)wj 2 _bia
=1

j=1 ,
fore =1,...,m,

ijZ(),

fory=1,...,n.

foryg =1,...,n,
inO,

fore =1,...,m.

32/59
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Dual of dual program

n
min E —Cj.’Bj n
j=1 max E CjT;
s.t. E (—aij)mj > —b,, n
j=1 s.t. E a;jr; < by,
fore=1,...,m, = S
orte=1,...,m
m_’] 2 O’ 9 9 9
T Z 0,

foryg =1,...,n.
forg =1,...,n.

—= Dual of the dual LLP is the primal LP!
33/59
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Proved the following:

Let L be an LP, and let L’ be its dual. Let L" be the dual to L.
Then L and L are the same LP.

34/59
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20.2.2: The Weak Duality Theorem
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Weak duality theorem

Theorem

If (X1, X2,...,xy,) is feasible for the primal LP and
(Y1,Y2y -+ Ym) is feasible for the dual LP, then

Z Cj.’Ej S Z b,,;’yi.
J 7

Namely, all the feasible solutions of the dual bound all the feasible
solutions of the primal.

36,/59
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Weak duality theorem — proof

By substitution from the dual form, and since the two solutions are
feasible, we know that

cha:j < Z(Z yiaij> By Z(Z aijwj>yi < Zbiyi .
J J =1 z J i

D)
@ vy being dual feasible implies ¢ < yT A
@ x being primal feasible implies Ax < b
Q@ = "z < (y"A)z < y'(Ax) < yTb
37/59
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Weak duality is weak...

© If apply the weak duality theorem on the dual program,
Q0 = ) (-b)ui <> —ca;,
=1 j=1
© which is the original inequality in the weak duality theorem.

© Weak duality theorem does not imply the strong duality theorem
which will be discussed next.

38,/59
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20.3: The strong duality theorem
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The strong duality theorem

Theorem (Strong duality theorem.)

If the primal LP problem has an optimal solution

7 = (m;, cees w;"b) then the dual also has an optimal solution,

y* = (y,...,y",), such that

Z s Z biy; .

Proof is tedious and omitted.

43
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20.4: Some duality examples
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2041 Maximum matching in Bipartite graph
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Max matching in bipartite graph as LP

Input:G = (L U R, E).

max E Lo

uv€eE

s.t. Z Typ < 1 Yv € G.
uwv€EE
Tyy > 0 Yuv € E

43/59
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Max matching in bipartite graph as LP (Copy)

Input:G = (L U R, E).

max Z Lyv
uv€E
s.t. Z Tyuy <1 Vv e€EGQG.
uv€E
Ty > 0 Yuv € E

44/59
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Max matching in bipartite graph as LP (Notes)
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2042 Shortest path
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Shortest path

Q@ G = (V,E): graph. s: source,
t: target

Q V(u,v) € E: weight w(u,v)
on edge.

© Q: Comp. shortest s-t path.

@ No edges into s/out of t.

@ d,: var=dist. sto x, Vo € V.

Q V(u,v) € E:
dy + w(u,v) > d,.

@ Alsod, = 0.

@ Trivial solution: all variables 0.

© Target: find assignment max d;.

@ LP to solve this!
47/59
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Shortest path

max d;
st. ds <0
d, + w(u,v) > d,

V(u,v) € E,
d,>0 VzeV.
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Q@ V(u,v) € E: weight w(u,v)
on edge.

© Q: Comp. shortest s-t path.

@ No edges into s/out of t.

Q@ d,: var=dist. stox, Ve € V.

Q V(u,v) € E:
dy + w(u,v) > d,.

@ Alsod, = 0.

© Trivial solution: all variables 0.

Q Target: find assignment max d.

@ LP to solve this!
47/59



Shortest path

max d;
st. ds <0
d, >0
Equivalently:
max d;
st. ds <0
d, —d,
d,>0

d, + w(u,v) > d,

V(u,v) € E,
Vo € V.

< w(u,v)
V(u,v) € E,
Vx € V.

@ G = (V,E): graph. s: source,
t: target

Q V(u,v) € E: weight w(u,v)
on edge.

© Q: Comp. shortest s-t path.

@ No edges into s/out of t.

Q@ d,: var=dist. stox, Ve € V.

Q V(u,v) € E:
dy + w(u,v) > d,.

@ Alsod, = 0.

© Trivial solution: all variables 0.

© Target: find assignment max d.

@ LP to solve this!



The dual

s.t.

max d;
st. ds <0
dy, — dy < w(u,v)
V(u,v) € E,

d, >0 VzeV.

Z Yuow (U, V)

(u,v)€E
Ys — Z Ysu >0 (*)
(s,u)€E
Z Yux — Z Yaxov Z 0
(u,z)EE (z,v)EE
Vo € V\ {s, t} ()
(u,t)€E
yu’U Z 07 V(u’ v) E E’
ys > 0.
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The dual — details

Q Yy, dual variable for the edge (u,v).

Q@ ys: dual variable for ds < 0

© Think about the y,, as a flow on the edge y..+.

© Assume that weights are positive.

@ LP is min cost flow of sending 1 unit flow from source s to t.

@ Indeed... (**) can be assumed to be hold with equality in the
optimal solution...

@ conservation of flow.

@ Equation (***) implies that one unit of flow arrives to the sink t.
© (*) implies that at least ys units of flow leaves the source.

@ Remaining of LLP implies that ys > 1.
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Integrality

@ In the previous example there is always an optimal solution with
integral values.

© This is not an obvious statement.
© This is not true in general.
Q If it were true we could solve NP C problems with LP.
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Set cover...

Set cover LP:

min E T

Fjeg:
s.t. Z T Z 1 V’Uzq, € S,
F;e7,
’u,,,;EFj
ZLj 2 0 VFj S F.

51,59
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Set cover dual is a packing LP...

max 3w

u; €S
s.t. Z y; <1 VF; € 7,
u; €F;

52,59
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Network flow

max E Ty

(s,v)€E
Tysp < c(u — v) V(u,v) € E
Z Ly—sv — Z Ly—w S 0 Vo € \ \ {57 t}
(u,v)€EE (v,w)€E
— D Tuset D, T <0 YweV\{st}
(u,v)€E (v,w)€E
0 < @y V(u,v) € E.

53,59
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Dual of network flow...

min Z c(u — V) Yuso

(u,v)€E
dy — dy < Yyuso V(u,v) € E
Yusv > 0 V(u,v) € E

d5:1, dtZO.

Under right interpretation: shortest path (see notes).
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Duality and min-cut max-flow

The Min-Cut Max-Flow Theorem follows from the strong duality
Theorem for Linear Programming.
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