Approximation Algorithms III

Lecture 10
September 24, 2018
10.1: Subset Sum
Subset Sum

Instance: $X = \{x_1, \ldots, x_n\}$ – n integer positive numbers, t - target number

Question: \exists subset of X s.t. sum of its elements is t?

Assume x_1, \ldots, x_n are all $\leq n$. Then this problem can be solved in

(A) The problem is still **NP-Hard**, so probably exponential time.
(B) $O(n^3)$.
(C) $2^{O(\log^2 n)}$.
(D) $O(n \log n)$.

(E) None of the above.
Subset Sum

Instance: \(X = \{x_1, \ldots, x_n\} \) \(n \) integer positive numbers, \(t \) - target number

Question: \(\exists \) subset of \(X \) s.t. sum of its elements is \(t \)?

SolveSubsetSum \((X, t, M)\)

\[
\begin{align*}
 b[0 & \ldots Mn] \leftarrow \text{false} \\
 & \quad \text{// } b[x] \text{ is true if } x \text{ can be} \\
 & \quad \text{// realized by subset of } X. \\
 b[0] & \leftarrow \text{true.} \\
 \text{for } i = 1, \ldots, n \text{ do} \\
 \quad \text{for } j = Mn \text{ down to } x_i \text{ do} \\
\end{align*}
\]
Subset Sum

Instance: \(X = \{ x_1, \ldots, x_n \} \) – \(n \) integer positive numbers, \(t \) - target number

Question: \(\exists \) subset of \(X \) s.t. sum of its elements is \(t \)?

\[
\text{SolveSubsetSum} (X, t, M)
\]

\[
b[0 \ldots Mn] \leftarrow \text{false}
\]

// \(b[x] \) is true if \(x \) can be

// realized by subset of \(X \).

\[
b[0] \leftarrow \text{true}.
\]

for \(i = 1, \ldots, n \) do

for \(j = Mn \) down to \(x_i \) do

//
Subset Sum

Subset Sum

Instance: \(X = \{x_1, \ldots, x_n\} \) \(n \) integer positive numbers, \(t \) - target number

Question: \(\exists \) subset of \(X \) s.t. sum of its elements is \(t \)?

\[
\text{SolveSubsetSum} \ (X, t, M)
\]

\[
b[0 \ldots Mn] \leftarrow \text{false}
\]

\[
// \ b[x] \text{ is } \text{true} \text{ if } x \text{ can be}
\]

\[
// \text{realized by subset of } X.
\]

\[
b[0] \leftarrow \text{true}.
\]

\[
\text{for } i = 1, \ldots, n \ \text{do}
\]

\[
\text{for } j = Mn \ \text{down to } x_i \ \text{do}
\]
Subset Sum

Instance: \(X = \{x_1, \ldots, x_n\} \) – \(n \) integer positive numbers, \(t \) - target number

Question: \(\exists \) subset of \(X \) s.t. sum of its elements is \(t \)?

SolveSubsetSum \((X, t, M)\)

\[
\begin{align*}
&M: \text{Max value input numbers.} \\
&R.T. \quad O(Mn^2) \\
&b[0 \ldots Mn] \leftarrow \text{false} \\
&\quad // b[x] \text{ is true if } x \text{ can be} \\
&\quad // \text{realized by subset of } X. \\
&b[0] \leftarrow \text{true}.
\end{align*}
\]

for \(i = 1, \ldots, n \) do

for \(j = Mn \) down to \(x_i \) do

...
Subset Sum

Efficient algorithm???

1. Algorithm solving Subset Sum in $O(Mn^2)$.
2. M might be prohibitly large...
3. if $M = 2^n$ \implies algorithm is not polynomial time.
4. Subset Sum is \textbf{NPC}.
5. Still want to solve quickly even if M huge.
6. Optimization version:

\textbf{Subset Sum Optimization}

\textbf{Instance}: (X, t): A set X of n positive integers, and a target number t.

\textbf{Question}: The largest number γ_{opt} one can represent as a subset sum of X which is smaller or equal to t.
Subset Sum

Efficient algorithm???

1. Algorithm solving Subset Sum in $O(Mn^2)$.
2. M might be prohibitly large...
3. if $M = 2^n \implies$ algorithm is not polynomial time.
4. Subset Sum is NPC.
5. Still want to solve quickly even if M huge.
6. Optimization version:

Subset Sum Optimization

Instance: (X, t): A set X of n positive integers, and a target number t.

Question: The largest number γ_{opt} one can represent as a subset sum of X which is smaller or equal to t.
Subset Sum

Efficient algorithm???

1. Algorithm solving Subset Sum in $O(Mn^2)$.
2. M might be prohibitly large...
3. if $M = 2^n \implies$ algorithm is not polynomial time.
4. Subset Sum is NPC.
5. Still want to solve quickly even if M huge.
6. Optimization version:

Subset Sum Optimization

Instance: (X, t): A set X of n positive integers, and a target number t.

Question: The largest number γ_{opt} one can represent as a subset sum of X which is smaller than or equal to t.
Subset Sum

2-approximation

Lemma

1. \((X, t)\); Given instance of Subset Sum. \(\gamma_{opt} \leq t\): Opt.
2. \(\implies\) Compute legal subset with sum \(\geq \gamma_{opt}/2\).
3. Running time \(O(n \log n)\).

Proof.

1. Sort numbers in \(X\) in decreasing order.
2. Greedily - add numbers from largest to smallest (if possible).
3. \(s\): Generates sum.
Subset Sum

2-approximation

Lemma

1. \((X, t)\); Given instance of **Subset Sum**. \(\gamma_{opt} \leq t\):
 - Opt.

2. \(\Rightarrow\) Compute legal subset with sum \(\geq \gamma_{opt}/2\).

3. Running time \(O(n \log n)\).

Proof.

1. Sort numbers in \(X\) in decreasing order.
2. Greedily - add numbers from largest to smallest (if possible).
3. \(s\): Generates sum.
Subset Sum

2-approximation

Lemma

1. \((X, t)\); Given instance of \textit{Subset Sum}. \(\gamma_{opt} \leq t\): Opt.
2. \(\implies\) Compute legal subset with sum \(\geq \gamma_{opt}/2\).
3. Running time \(O(n \log n)\).

Proof.

1. Sort numbers in \(X\) in decreasing order.
2. Greedily - add numbers from largest to smallest (if possible).
3. \(s\): Generates sum.
Subset Sum

2-approximation

Lemma

1. \((X, t)\); Given instance of Subset Sum. \(\gamma_{\text{opt}} \leq t\):
 Opt.
2. \(\implies\) Compute legal subset with sum \(\geq \gamma_{\text{opt}}/2\).
3. Running time \(O(n \log n)\).

Proof.

1. Sort numbers in \(X\) in decreasing order.
2. Greedily - add numbers from largest to smallest (if possible).
3. \(s\): Generates sum.
Subset Sum

2-approximation

Lemma

1. \((X, t)\); Given instance of Subset Sum. \(\gamma_{\text{opt}} \leq t\): Opt.
2. \(\implies\) Compute legal subset with sum \(\geq \frac{\gamma_{\text{opt}}}{2}\).
3. Running time \(O(n \log n)\).

Proof.

1. Sort numbers in \(X\) in decreasing order.
2. Greedily - add numbers from largest to smallest (if possible).
3. \(s\): Generates sum.
10.1.1: On the complexity of ε-approximation algorithms
Polynomial Time Approximation Schemes

Definition (PTAS)

PROB: Maximization problem.

\(\varepsilon > 0 \): approximation parameter.

\(\mathcal{A}(I, \varepsilon) \) is a **polynomial time approximation scheme (PTAS)** for **PROB**:

1. \(\forall I: (1 - \varepsilon) |\text{opt}(I)| \leq |\mathcal{A}(I, \varepsilon)| \leq |\text{opt}(I)|, \)
2. \(|\text{opt}(I)| \): opt price,
3. \(|\mathcal{A}(I, \varepsilon)| \): price of solution of \(\mathcal{A} \).
4. \(\mathcal{A} \) running time polynomial in \(n \) for fixed \(\varepsilon \).

For minimization problem:

\(|\text{opt}(I)| \leq |\mathcal{A}(I, \varepsilon)| \leq (1 + \varepsilon)|\text{opt}(I)|. \)
Polynomial Time Approximation Schemes

Definition (PTAS)

PROB: Maximization problem.

\(\varepsilon > 0 \): approximation parameter.

\(A(I, \varepsilon) \) is a *polynomial time approximation scheme* (PTAS) for **PROB**:

1. \(\forall I: (1 - \varepsilon) \mid \text{opt}(I) \mid \leq \mid A(I, \varepsilon) \mid \leq \mid \text{opt}(I) \mid \),

2. \(\mid \text{opt}(I) \mid \): opt price,

3. \(\mid A(I, \varepsilon) \mid \): price of solution of \(A \).

4. \(A \) running time polynomial in \(n \) for fixed \(\varepsilon \).

For minimization problem:

\(\mid \text{opt}(I) \mid \leq \mid A(I, \varepsilon) \mid \leq (1 + \varepsilon) \mid \text{opt}(I) \mid \).
Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running time $O(n^{1/\varepsilon})$ is a PTAS. Algorithm with running time $O(1/\varepsilon^n)$ is not.

2. Fully polynomial...

Definition (FPTAS)

An approximation algorithm is fully polynomial time approximation scheme (FPTAS) if it is a PTAS, and its running time is polynomial both in n and $1/\varepsilon$.

3. Example: PTAS with running time $O(n^{1/\varepsilon})$ is not a FPTAS.

4. Example: PTAS with running time $O(n^2/\varepsilon^3)$ is a FPTAS.
Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running time $O(n^{1/\varepsilon})$ is a PTAS.
 Algorithm with running time $O(1/\varepsilon^n)$ is not.

2. Fully polynomial...

Definition (FPTAS)

An approximation algorithm is **fully polynomial time approximation scheme** (FPTAS) if it is a PTAS, and its running time is polynomial both in n and $1/\varepsilon$.

3. Example: PTAS with running time $O(n^{1/\varepsilon})$ is not a FPTAS.

4. Example: PTAS with running time $O(n^2/\varepsilon^3)$ is a FPTAS.
Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running time $O(n^{1/\varepsilon})$ is a PTAS.
 Algorithm with running time $O(1/\varepsilon^n)$ is not.

2. Fully polynomial...

Definition (FPTAS)

An approximation algorithm is **fully polynomial time approximation scheme** (FPTAS) if it is a PTAS, and its running time is polynomial both in n and $1/\varepsilon$.

3. Example: PTAS with running time $O(n^{1/\varepsilon})$ is not a FPTAS.

4. Example: PTAS with running time $O(n^2/\varepsilon^3)$ is a FPTAS.
Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running time $O(n^{1/\varepsilon})$ is a PTAS. Algorithm with running time $O(1/\varepsilon^n)$ is not.

2. Fully polynomial...

Definition (FPTAS)

An approximation algorithm is fully polynomial time approximation scheme (FPTAS) if it is a PTAS, and its running time is polynomial both in n and $1/\varepsilon$.

3. Example: PTAS with running time $O(n^{1/\varepsilon})$ is not a FPTAS.

4. Example: PTAS with running time $O(n^2/\varepsilon^3)$ is a FPTAS.
Approximating Subset Sum

Subset Sum Approx

Instance: \((X, t, \varepsilon)\): A set \(X\) of \(n\) positive integers, a target number \(t\), and parameter \(\varepsilon > 0\).

Question: A number \(z\) that one can represent as a subset sum of \(X\), such that \((1 - \varepsilon)\gamma_{\text{opt}} \leq z \leq \gamma_{\text{opt}} \leq t\).
Approximating Subset Sum
Looking again at the exact algorithm

`ExactSubsetSum(S, t)`

1. $n \leftarrow |S|$
2. $P_0 \leftarrow \{0\}$
3. for $i = 1 \ldots n$ do
 1. $P_i \leftarrow P_{i-1} \cup (P_{i-1} + x_i)$
 2. Remove from P_i all elements $> t$

return largest element in P_n

1. $S = \{a_1, \ldots, a_n\}$
 $x + S = \{a_1 + x, a_2 + x, \ldots a_n + x\}$
2. Lists might explode in size.
Trim the lists...

L': Inc. sorted list of numbers

\[
\text{\textbf{Trim}}(L', \delta) \\
L = \langle y_1 \ldots y_m \rangle \\
curr \leftarrow y_1 \\
L_{\text{out}} \leftarrow \{ y_1 \} \\
\text{for } i = 2 \ldots m \text{ do} \\
\quad \text{if } y_i > curr \cdot (1 + \delta) \\
\quad \quad \text{Append } y_i \text{ to } L_{\text{out}} \\
\quad curr \leftarrow y_i \\
\text{return } L_{\text{out}}
\]

Definition

For two positive real numbers $z \leq y$, the number y is a δ-approximation to z if

\[
\frac{y}{1 + \delta} \leq z \leq y.
\]

Observation

If $x \in L'$ then there exists a number $y \in L_{\text{out}}$ such that $y \leq x \leq y(1 + \delta)$, where
Trim the lists...

ApproxSubsetSum(S, t)

```
// $S = \{x_1, \ldots, x_n\}$,
// $x_1 \leq x_2 \leq \ldots \leq x_n$

n ← $|S|$, $L_0 ← \{0\}$,
$\delta = \varepsilon/2n$

for $i = 1 \ldots n$ do
  $E_i ← L_{i-1} \cup (L_{i-1} + x_i)$
  $L_i ← \text{Trim}(E_i, \delta)$
  Remove from $L_i$ elems $> t$.

return largest element in $L_n$
```

E_i: Computed by merging two sorted lists in linear time.
Understanding trimming
Remark

1. Can assume that trimmed lists L_i are sorted...
2. Algorithm: $E_i \leftarrow L_{i-1} \cup (L_{i-1} + x_i)$
3. So, this is just copy, shift, and merge of two sorted lists.
4. ... resulting in a sorted list.
5. takes linear time in size of lists.
Remark

1. Can assume that trimmed lists L_i are sorted...
2. Algorithm: $E_i \leftarrow L_{i-1} \cup (L_{i-1} + x_i)$
3. So, this is just copy, shift, and merge of two sorted lists.
4. ... resulting in a sorted list.
5. takes linear time in size of lists.
Remark

1. Can assume that trimmed lists \(L_i \) are sorted...
2. Algorithm: \(E_i \leftarrow L_{i-1} \cup (L_{i-1} + x_i) \)
3. So, this is just copy, shift, and merge of two sorted lists.
4. ... resulting in a sorted list.
5. takes linear time in size of lists.
Remark

1. Can assume that trimmed lists L_i are sorted...
2. Algorithm: $E_i \leftarrow L_{i-1} \cup (L_{i-1} + x_i)$
3. So, this is just copy, shift, and merge of two sorted lists.
4. ... resulting in a sorted list.
5. takes linear time in size of lists.
Remark

1. Can assume that trimmed lists L_i are sorted...
2. Algorithm: $E_i \leftarrow L_{i-1} \cup (L_{i-1} + x_i)$
3. So, this is just copy, shift, and merge of two sorted lists.
4. ... resulting in a sorted list.
5. takes linear time in size of lists.
Analysis

1. E_i list generated by algorithm in ith iteration.
2. P_i: list of numbers (no trimming).

Claim

For any $x \in P_i$ there exists $y \in L_i$ such that $y \leq x \leq (1 + \delta)^i y$.

Proof

1. If $x \in P_1$ then follows by observation above.
2. If $x \in P_{i-1}$ implies (induction) $\exists y' \in L_{i-1}$ s.t. $y' \leq x \leq (1 + \delta)^{i-1} y'$.
3. By observation $\exists y \in L_i$ s.t. $y \leq y' \leq (1 + \delta) y$, As such,
Analysis

1. E_i: list generated by algorithm in ith iteration.
2. P_i: list of numbers (no trimming).

Claim

For any $x \in P_i$ there exists $y \in L_i$ such that
$y \leq x \leq (1 + \delta)^i y$.

Proof

1. If $x \in P_1$ then follows by observation above.
2. If $x \in P_{i-1} \implies$ (induction) $\exists y' \in L_{i-1}$ s.t.
 $y' \leq x \leq (1 + \delta)^{i-1} y'$.
3. By observation $\exists y \in L_i$ s.t. $y \leq y' \leq (1 + \delta) y$,
 As such,
Analysis

1. E_i: list generated by algorithm in ith iteration.
2. P_i: list of numbers (no trimming).

Claim

For any $x \in P_i$ there exists $y \in L_i$ such that

$y \leq x \leq (1 + \delta)^i y$.

Proof

1. If $x \in P_1$ then follows by observation above.
2. If $x \in P_{i-1} \implies$ (induction) $\exists y' \in L_{i-1}$ s.t.

 $y' \leq x \leq (1 + \delta)^{i-1} y'$.
3. By observation $\exists y \in L_i$ s.t. $y \leq y' \leq (1 + \delta)y$,

As such,
Proof continued

1. If $x \in P_i \setminus P_{i-1}$ \implies $x = \alpha + x_i$, for some $\alpha \in P_{i-1}$.

2. By induction, $\exists \alpha' \in L_{i-1}$ s.t.
 \[\alpha' \leq \alpha \leq (1 + \delta)^{i-1}\alpha'. \]

3. Thus, $\alpha' + x_i \in E_i$.

4. $\exists x' \in L_i$ s.t. $x' \leq \alpha' + x_i \leq (1 + \delta)x'$.

5. Thus,
 \[x' \leq \alpha' + x_i \leq \alpha + x_i = x \leq (1 + \delta)^{i-1}\alpha' + x_i \leq (1 + \delta)^{i-1}(\alpha' + x_i) \leq (1 + \delta)^{i}x'. \]

\blacksquare
Proof continued

1. If \(x \in P_i \setminus P_{i-1} \implies x = \alpha + x_i \), for some \(\alpha \in P_{i-1} \).

2. By induction, \(\exists \alpha' \in L_{i-1} \) s.t. \(\alpha' \leq \alpha \leq (1 + \delta)^{i-1} \alpha' \).

3. Thus, \(\alpha' + x_i \in E_i \).

4. \(\exists x' \in L_i \) s.t. \(x' \leq \alpha' + x_i \leq (1 + \delta)x' \).

5. Thus,
\[
x' \leq \alpha' + x_i \leq \alpha + x_i = x \leq (1+\delta)^{i-1} \alpha' + x_i \leq (1 + \delta)^{i-1}(\alpha' + x_i) \leq (1 + \delta)^i x'.
\]
Proof continued

1. If \(x \in P_i \setminus P_{i-1} \implies x = \alpha + x_i \), for some \(\alpha \in P_{i-1} \).
2. By induction, \(\exists \alpha' \in L_{i-1} \) s.t.
 \(\alpha' \leq \alpha \leq (1 + \delta)^{i-1}\alpha' \).
3. Thus, \(\alpha' + x_i \in E_i \).
4. \(\exists x' \in L_i \) s.t. \(x' \leq \alpha' + x_i \leq (1 + \delta)x' \).
5. Thus,
 \(x' \leq \alpha' + x_i \leq \alpha + x_i = x \leq (1 + \delta)^{i-1}\alpha' + x_i \leq (1 + \delta)^i x' \).
Proof continued

1. If $x \in P_i \setminus P_{i-1}$ \implies $x = \alpha + x_i$, for some $\alpha \in P_{i-1}$.

2. By induction, $\exists \alpha' \in L_{i-1}$ s.t. $\alpha' \leq \alpha \leq (1 + \delta)^{i-1}\alpha'$.

3. Thus, $\alpha' + x_i \in E_i$.

4. $\exists x' \in L_i$ s.t. $x' \leq \alpha' + x_i \leq (1 + \delta)x'$.

5. Thus,

$$x' \leq \alpha' + x_i \leq \alpha + x_i = x \leq (1+\delta)^{i-1}\alpha' + x_i \leq (1 + \delta)^i x'.$$
Proof continued

1. If \(x \in P_i \setminus P_{i-1} \implies x = \alpha + x_i \), for some \(\alpha \in P_{i-1} \).
2. By induction, \(\exists \alpha' \in L_{i-1} \) s.t. \(\alpha' \leq \alpha \leq (1 + \delta)^{i-1} \alpha' \).
3. Thus, \(\alpha' + x_i \in E_i \).
4. \(\exists x' \in L_i \) s.t. \(x' \leq \alpha' + x_i \leq (1 + \delta) x' \).
5. Thus,
\[
x' \leq \alpha' + x_i \leq \alpha + x_i = x \leq (1 + \delta)^{i-1} \alpha' + x_i \leq (1 + \delta)^i x'.
\]

1. If \(x \in P_i \setminus P_{i-1} \implies x = \alpha + x_i \), for some \(\alpha \in P_{i-1} \).

2. By induction, \(\exists \alpha' \in L_{i-1} \) s.t. \(\alpha' \leq \alpha \leq (1 + \delta)^{i-1}\alpha' \).

3. Thus, \(\alpha' + x_i \in E_i \).

4. \(\exists x' \in L_i \) s.t. \(x' \leq \alpha' + x_i \leq (1 + \delta)x' \).

5. Thus,
\[x' \leq \alpha' + x_i \leq \alpha + x_i = x \leq (1 + \delta)^{i-1}\alpha' + x_i \leq (1 + \delta)^i x'. \]
Proof continued

1. If $x \in P_i \setminus P_{i-1} \implies x = \alpha + x_i$, for some $\alpha \in P_{i-1}$.

2. By induction, $\exists \alpha' \in L_{i-1}$ s.t.
 $$\alpha' \leq \alpha \leq (1 + \delta)^{i-1}\alpha'.$$

3. Thus, $\alpha' + x_i \in E_i$.

4. $\exists x' \in L_i$ s.t. $x' \leq \alpha' + x_i \leq (1 + \delta)x'$.

5. Thus,
 $$x' \leq \alpha' + x_i \leq \alpha + x_i = x \leq (1 + \delta)^{i-1}\alpha' + x_i \leq (1 + \delta)^{i-1}(\alpha' + x_i) \leq (1 + \delta)^i x'.$$
Proof continued

1. If $x \in P_i \setminus P_{i-1} \implies x = \alpha + x_i$, for some $\alpha \in P_{i-1}$.

2. By induction, $\exists \alpha' \in L_{i-1}$ s.t. $\alpha' \leq \alpha \leq (1 + \delta)^{i-1} \alpha'$.

3. Thus, $\alpha' + x_i \in E_i$.

4. $\exists x' \in L_i$ s.t. $x' \leq \alpha' + x_i \leq (1 + \delta)x'$.

5. Thus,
 \[x' \leq \alpha' + x_i \leq \alpha + x_i = x \leq (1+\delta)^{i-1} \alpha' + x_i \leq (1 + \delta)^{i-1}(\alpha' + x_i) \leq (1 + \delta)^i x'. \]
10.1.1.1: Running time
Running time of ApproxSubsetSum

Lemma
For $x \in [0, 1]$, it holds $\exp(x/2) \leq (1 + x)$.

Lemma
For $0 < \delta < 1$, and $x \geq 1$, we have

$$\log_{1+\delta} x \leq \frac{2 \ln x}{\delta} = O\left(\frac{\ln x}{\delta}\right).$$

See notes for a proof of lemmas.
Running time of ApproxSubsetSum

Observation
In a list generated by Trim, for any number x, there are no two numbers in the trimmed list between x and $(1 + \delta)x$.

Lemma
$|L_i| = O\left(\frac{n}{\varepsilon} \log n\right)$, for $i = 1, \ldots, n$.
Running time of ApproxSubsetSum

Proof.

1. $L_{i-1} + x_i \subseteq [x_i, ix_i]$.

2. Trimming $L_{i-1} + x_i$ results in list of size

$$\log_{1+\delta} \frac{ix_i}{x_i} = O\left(\frac{\ln i}{\delta}\right) = O\left(\frac{\ln n}{\delta}\right),$$

3. Now, $\delta = \varepsilon/2n$, and

$$|L_i| \leq |L_{i-1}| + O\left(\frac{\ln n}{\delta}\right) \leq |L_{i-1}| + O\left(\frac{n \ln n}{\varepsilon}\right) = O\left(\frac{n^2 \log n}{\varepsilon}\right).$$
Running time of \textbf{ApproxSubsetSum}

Proof.

1. $L_{i-1} + x_i \subseteq [x_i, ix_i]$.

2. Trimming $L_{i-1} + x_i$ results in list of size

 \[
 \log_{1+\delta} \frac{ix_i}{x_i} = O\left(\frac{\ln i}{\delta}\right) = O\left(\frac{\ln n}{\delta}\right),
 \]

3. Now, $\delta = \epsilon / 2n$, and

 \[
 |L_i| \leq |L_{i-1}| + O\left(\frac{\ln n}{\delta}\right) \leq |L_{i-1}| + O\left(\frac{n \ln n}{\epsilon}\right) \\
 = O\left(\frac{n^2 \log n}{\epsilon}\right)
 \]
Lemma

The running time of \textbf{ApproxSubsetSum} is \(O\left(\frac{n^3}{\epsilon} \log n\right) \).

Proof.

1. Running time of \textbf{ApproxSubsetSum} dominated by total length of \(L_1, \ldots, L_n \).

2. Above lemma implies

\[
\sum_i \left| L_i \right| = O \left(n \times \frac{n^2}{\epsilon} \log n \right) = O \left(\frac{n^3}{\epsilon} \log n \right)
\]

3. \textbf{Trim} runs in time proportional to size of lists.

4. Overall, \(\text{R.T.} = O\left(\frac{n^3}{\epsilon} \log n \right) \).
ApproxSubsetSum

Theorem

ApproxSubsetSum returns $u \leq t$, s.t.

\[
\frac{\gamma_{opt}}{1+\varepsilon} \leq u \leq \gamma_{opt} \leq t,
\]

γ_{opt}: opt solution.

Running time is $O(\left(\frac{n^3}{\varepsilon}\right) \log n)$.

Proof.

1. Running time from above.
2. $\gamma_{opt} \in P_n$: optimal solution.
3. $\exists z \in L_n$, such that $z \leq \text{opt} \leq (1 + \delta)^n z$
4. $(1 + \delta)^n = (1 + \varepsilon/2n)^n \leq \exp\left(\frac{\varepsilon}{2}\right) \leq 1 + \varepsilon,$
 since $1 + x \leq e^x$ for $x \geq 0$.
5. $\gamma_{opt}/(1+\varepsilon) \leq z \leq \text{opt} \leq t$.
ApproxSubsetSum

Theorem

ApproxSubsetSum returns $u \leq t$, s.t.

$$\frac{\gamma_{opt}}{1+\varepsilon} \leq u \leq \gamma_{opt} \leq t,$$

γ_{opt}: opt solution.

Running time is $O((n^3/\varepsilon) \log n)$.

Proof.

1. Running time from above.

2. $\gamma_{opt} \in P_n$: optimal solution.

3. $\exists z \in L_n$, such that $z \leq \text{opt} \leq (1 + \delta)^n z$

4. $(1 + \delta)^n = (1 + \varepsilon/2n)^n \leq \exp\left(\frac{\varepsilon}{2}\right) \leq 1 + \varepsilon$, since $1 + x \leq e^x$ for $x \geq 0$.

5. $\gamma_{opt}/(1 + \varepsilon) \leq z \leq \text{opt} \leq t$.
ApproxSubsetSum

Theorem

ApproxSubsetSum returns $u \leq t$, s.t.
\[\frac{\gamma_{\text{opt}}}{1+\varepsilon} \leq u \leq \gamma_{\text{opt}} \leq t, \]

γ_{opt}: opt solution.

Running time is $O((n^3/\varepsilon) \log n)$.

Proof.

1. Running time from above.
2. $\gamma_{\text{opt}} \in P_n$: optimal solution.
3. $\exists z \in L_n$, such that $z \leq \text{opt} \leq (1 + \delta)^n z$
4. $(1 + \delta)^n = (1 + \varepsilon/2n)^n \leq \exp\left(\frac{\varepsilon}{2}\right) \leq 1 + \varepsilon$, since $1 + x \leq e^x$ for $x \geq 0$.
5. $\gamma_{\text{opt}}/(1 + \varepsilon) \leq z \leq \text{opt} \leq t$.
ApproxSubsetSum

Theorem

ApproxSubsetSum returns $u \leq t$, s.t.

\[
\frac{\gamma_{\text{opt}}}{1+\varepsilon} \leq u \leq \gamma_{\text{opt}} \leq t,
\]

γ_{opt}: opt solution.

Running time is $O((n^3 / \varepsilon) \log n)$.

Proof.

1. Running time from above.
2. $\gamma_{\text{opt}} \in P_n$: optimal solution.
3. $\exists z \in L_n$, such that $z \leq \text{opt} \leq (1 + \delta)^n z$
4. $(1 + \delta)^n = (1 + \varepsilon/2n)^n \leq \exp\left(\frac{\varepsilon}{2}\right) \leq 1 + \varepsilon$, since $1 + x \leq e^x$ for $x \geq 0$.
ApproxSubsetSum

Theorem

ApproxSubsetSum returns \(u \leq t \), s.t.
\[
\frac{\gamma_{opt}}{1 + \varepsilon} \leq u \leq \gamma_{opt} \leq t,
\]
\(
\gamma_{opt}: \text{opt solution.}
\)

Running time is \(O\left(\frac{n^3}{\varepsilon} \log n\right) \).

Proof.

1. Running time from above.
2. \(\gamma_{opt} \in P_n \): optimal solution.
3. \(\exists z \in L_n, \text{such that} z \leq \text{opt} \leq (1 + \delta)^n z \)
4. \((1 + \delta)^n = (1 + \varepsilon / 2n)^n \leq \exp\left(\frac{\varepsilon}{2}\right) \leq 1 + \varepsilon \), since \(1 + x \leq e^x \) for \(x \geq 0 \).
5. \(\gamma_{opt} / (1 + \varepsilon) \leq z \leq \text{opt} \leq t \).
10.2: Maximal matching
Maximal matching

1. $G = (V, E)$
2. Compute maximal matching...
3. $X \subseteq E$ which is maximal and independent.
4. Maximal = can not improved by adding an edge.
5. Maximum = largest possible set among all possible sets.
6. Computing the maximum is hard then computing maximal solution.
7. Q: Find maximal matching quickly and of large size...
An example of the greedy algorithm...
Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and remove it.
3. Clearly a maximal matching...
4. This is a 2-approximation to the maximum matching.
5. Because...
6. Every edge in M “kills” two edges of X in the worst case.
Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and remove it.
3. Clearly a maximal matching...
4. This is a 2-approximation to the maximum matching.
5. Because...
6. Every edge in M “kills” two edges of X in the worst case.
Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and remove it.
3. Clearly a maximal matching...
4. This is a 2-approximation to the maximum matching.
5. Because...
6. Every edge in M “kills” two edges of X in the worst case.
Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and remove it.
3. Clearly a maximal matching...
4. This is a 2-approximation to the maximum matching.
5. Because...
6. Every edge in M “kills” two edges of X in the worst case.
Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and remove it.
3. Clearly a maximal matching...
4. This is a 2-approximation to the maximum matching.
5. Because...
6. Every edge in M “kills” two edges of X in the worst case.
Maximal matching: Result

Theorem

Given a graph G one can compute in $O(n + m)$ time, a maximal matching with at least $|X|/2$ edges, where X is the size of the maximum (optimal) matching.
10.2.1: Bin packing
Bin packing

Problem definition

Bin Packing

Instance: \(v \): Bin size. \(S = \{\alpha_1, \ldots, \alpha_n\} \): \(n \) items
\(\alpha_i \): size of \(i \)th item.

Target: Find min \# \(B \), and a decomposition \(S_1, \ldots, S_B \) of \(S \), such that \(\forall j \sum_{x \in S_j} \leq v \).

1. \(\bigcup_i S_i = S \) and \(\forall i \neq j \quad S_i \cap S_j = \emptyset \).
2. **NP-Hard** from Partition.
3. **NP-Hard** to approximate within \(3/2 \).
4. Natural problem...
5. How to approximate?
6. First fit. Have a row of bins, insert items greedily, like...
Bin packing

Problem definition

Bin Packing

Instance: \(v \): Bin size. \(S = \{\alpha_1, \ldots, \alpha_n\} \): \(n \) items
\(\alpha_i \): size of \(i \)th item.

Target: Find min \(\# B \), and a decomposition \(S_1, \ldots, S_B \) of \(S \), such that \(\forall j \sum_{x \in S_j} \leq v \).

1. \(\bigcup_i S_i = S \) and \(\forall i \neq j \ S_i \cap S_j = \emptyset \).
2. \(\textbf{NP-Hard} \) from Partition.
3. \(\textbf{NP-Hard} \) to approximate within \(3/2 \).
4. Natural problem...
5. How to approximate?
6. First fit: Have a row of bins, insert items greedily, like...
Bin packing

Problem definition

Bin Packing

<table>
<thead>
<tr>
<th>Instance: v: Bin size. S = {α₁, ..., αₙ}: n items</th>
</tr>
</thead>
<tbody>
<tr>
<td>αᵢ: size of i-th item.</td>
</tr>
<tr>
<td>Target: Find min ≠ B, and a decomposition S₁, ..., Sₘ of S, such that ∀j (\sum_{x \in S_j} \leq v).</td>
</tr>
</tbody>
</table>

1. \(\bigcup_i S_i = S \) and ∀\(i \neq j \), \(S_i \cap S_j = \emptyset \).
2. **NP-Hard** from Partition.
3. **NP-Hard** to approximate within \(3/2 \).
4. Natural problem...
5. How to approximate?
6. First fit: Have a row of bins, insert items greedily into the first bin that fits them.
7. First fit decreasing: Sort the elements first...
Bin packing

Problem definition

Bin Packing

Instance: \(v \): Bin size. \(S = \{\alpha_1, \ldots, \alpha_n\} \): \(n \) items
\(\alpha_i \): size of \(i \)th item.

Target: Find \(\min \) \(\# B \), and a decomposition \(S_1, \ldots, S_B \) of \(S \), such that \(\forall j \sum_{x \in S_j} \leq v \).

1. \(\bigcup_i S_i = S \) and \(\forall i \neq j \quad S_i \cap S_j = \emptyset \).
2. \textbf{NP-Hard} from \textbf{Partition}.
3. \textbf{NP-Hard} to approximate within \(3/2 \).
4. Natural problem...
5. How to approximate?
6. First fit: Have a row of bins, insert items one by one, like
Bin packing

Problem definition

Bin Packing

Instance: v: Bin size. $S = \{\alpha_1, \ldots, \alpha_n\}$: n items
$
\alpha_i$: size of ith item.

Target: Find $\min \# B$, and a decomposition S_1, \ldots, S_B of S, such that $\forall j \sum_{x \in S_j} x \leq v$.

1. $\bigcup_i S_i = S$ and $\forall i \neq j$ $S_i \cap S_j = \emptyset$.
2. **NP-Hard** from **Partition**.
3. **NP-Hard** to approximate within $3/2$.
4. Natural problem...
5. How to approximate?
6. First fit: Have a row of bins, insert items greedily into the first bin that fits them.
Bin packing

Problem definition

Bin Packing

Instance: v: Bin size. $S = \{\alpha_1, \ldots, \alpha_n\}$: n items

α_i: size of ith item.

Target: Find min $\# B$, and a decomposition S_1, \ldots, S_B of S, such that $\forall j \sum_{x \in S_j} \leq v$.

1. $\cup_i S_i = S$ and $\forall i \neq j \ S_i \cap S_j = \emptyset$.
2. **NP-Hard** from **Partition**.
3. **NP-Hard** to approximate within $3/2$.
4. Natural problem...
5. How to approximate?

6. First fit: Have a row of bins, insert items greedily into the first bin that fits them.
7. First fit decreasing: Sort the elements first...
Bin packing

Problem definition

Bin Packing

Instance: \(v \): Bin size. \(S = \{\alpha_1, \ldots, \alpha_n\} \): \(n \) items
\(\alpha_i \): size of \(i \)th item.

Target: Find \(\min \# B \), and a decomposition \(S_1, \ldots, S_B \) of \(S \), such that \(\forall j \sum_{x \in S_j} \leq v \).

1. \(\bigcup_i S_i = S \) and \(\forall i \neq j \quad S_i \cap S_j = \emptyset \).
2. **NP-Hard** from **Partition**.
3. **NP-Hard** to approximate within \(3/2 \).
4. Natural problem...
5. How to approximate?
6. First fit: Have a row of bins, insert items greedily.

30/41112
Bin packing

Problem definition

Bin Packing

Instance: \(v \): Bin size. \(S = \{\alpha_1, \ldots, \alpha_n\} \): \(n \) items
\(\alpha_i \): size of \(i \)th item.

Target: Find min \(\# B \), and a decomposition \(S_1, \ldots, S_B \) of \(S \), such that \(\forall j \sum_{x \in S_j} \leq v \).

1. \(\bigcup_i S_i = S \) and \(\forall i \neq j \quad S_i \cap S_j = \emptyset \).
2. \textbf{NP-Hard} from Partition.
3. \textbf{NP-Hard} to approximate within \(3/2 \).
4. Natural problem...
5. How to approximate?
6. First fit: Have a row of bins, insert items greedily, like...
Bin packing: First fit

Analysis

Lemma

First fit is a 2-approximation.

Proof.

Observe that only one bin can have less than $\frac{v}{2}$ content in it...
10.3: Independent set of axis-parallel rectangles
An example

Input
Assume: Open rectangles.

Independent set of rectangles.
An example

Input
Assume: Open rectangles.

Independent set of rectangles.
Given n intervals on the real line, computing the largest independent set of intervals on the real line, can be done in:

(A) $O(n)$ time.
(B) $O(n \log n)$ time.
(C) $O(n^{3/2})$ time.
(D) $O(n^2)$ time.
(E) NP-Hard.
Independent set of rectangles
Algorithm: Divide & Conquer
Independent set of rectangles

Algorithm: Divide & Conquer
Independent set of rectangles

Algorithm: Divide & Conquer
Independent set of rectangles

Algorithm: Divide & Conquer
Independent set of rectangles

Algorithm: Divide & Conquer
Independent set of rectangles

Algorithm: Divide & Conquer
Independent set of rectangles

Algorithm: Divide & Conquer
Independent set of rectangles

Algorithm: Divide & Conquer
Independent set of rectangles

Algorithm: Divide & Conquer

\(\mathcal{R} \): A set of axis parallel rectangles.

RectIndep*(\(\mathcal{R} \)):

\[
\text{if } |\mathcal{R}| \leq 10 \text{ then}
\]

Solve by brute force

\text{return size of solution}

\(x_M \): Median of right \(x \)-coordinate of rects in \(\mathcal{R} \)

\(\ell \): Vertical line through \(x_M \).

\(\mathcal{R}_M \): Rects of \(\mathcal{R} \) intersecting \(\ell \)

\(\mathcal{R}_L, \mathcal{R}_R \): Rectangles in \(\mathcal{R} \) left/ right of \(\ell \).

\(S_L \leftarrow \text{RectIndep}(\mathcal{R}_L) \)

\(S_R \leftarrow \text{RectIndep}(\mathcal{R}_R) \)

\(S_M \leftarrow \text{compute opt solution for } \mathcal{R}_M \text{ (intervals!)} \)

\text{return max}(S_M, S_L + S_R)
Analysis

1. If $S_M \geq \text{Opt} / (2 \log n)$... done.
2. $\text{Opt}_L + \text{Opt}_R \geq (1 - 1/(2 \log n)) \text{Opt}$.
3. By induction: $S_L \geq \text{Opt}_L/(2 \log(n/2))$ and $S_R \geq \text{Opt}_R/(2 \log(n/2))$.
4. $S_L + S_R \geq \frac{(1 - 1/(2 \log n)) \text{Opt}}{2 \log(n/2)}$
5. $\frac{1}{2 \log(n/2)}$ =
 \[
 \frac{1}{2 \log n - 2} - \frac{1}{(2 \log n)(2 \log n - 2)}
 \geq \frac{2 \log n - 1}{(2 \log n)(2 \log n - 2)} \geq
 \frac{1}{(2 \log n)(2 \log n - 2)} \geq \frac{1}{2 \log n}.
 \]
Analysis

1. If $S_M \geq \text{Opt} / (2 \lg n)$... done.
2. $\text{Opt}_L + \text{Opt}_R \geq (1 - 1/(2 \lg n))\text{Opt}$.
3. By induction: $S_L \geq \text{Opt}_L / (2 \lg (n/2))$ and $S_R \geq \text{Opt}_R / (2 \lg (n/2))$.
4. $S_L + S_R \geq \frac{(1 - 1/(2 \lg n))\text{Opt}}{2 \lg (n/2)}$

5. \[
\frac{1}{2 \lg (n/2)} = \frac{1}{2 \lg n - 2} - \frac{(2 \lg n)(2 \lg n - 2)}{2 \lg n - 1} \geq \frac{1}{(2 \lg n)(2 \lg n - 2)} \geq \frac{1}{2 \lg n}.
\]
Analysis

1. If $S_M \geq \text{Opt} / (2 \log n)$... done.
2. $\text{Opt}_L + \text{Opt}_R \geq (1 - 1 / (2 \log n)) \text{Opt}$.
3. By induction: $S_L \geq \text{Opt}_L / (2 \log (n/2))$ and $S_R \geq \text{Opt}_R / (2 \log (n/2))$.
4. $S_L + S_R \geq \frac{(1 - 1 / (2 \log n)) \text{Opt}}{2 \log (n/2)}$
5. $\frac{1}{2 \log (n/2)} = \frac{1}{2 \log n - 2} - \frac{(2 \log n)(2 \log n - 2)}{2 \log n - 1} \geq \frac{(2 \log n)(2 \log n - 2)}{2 \log n - 2} \geq \frac{1}{2 \log n}$.
Analysis

1. If $S_M \geq \text{Opt}/(2 \lg n)$... done.
2. $\text{Opt}_L + \text{Opt}_R \geq (1 - 1/(2 \lg n))\text{Opt}$.
3. By induction: $S_L \geq \text{Opt}_L/(2 \lg(n/2))$ and $S_R \geq \text{Opt}_R/(2 \lg(n/2))$.
4. $S_L + S_R \geq \frac{(1-1/(2 \lg n))\text{Opt}}{2 \lg(n/2)}$
5. $\frac{1}{2 \lg(n/2)} = 1 - \frac{2 \lg n - 2}{2 \lg n - 1}$
 $\geq \frac{(2 \lg n)(2 \lg n - 2)}{(2 \lg n)(2 \lg n - 2)} \geq \frac{1}{2 \lg n}$.
7. Algorithm is $2 \lg n$ approximation.
Analysis

1. If $S_M \geq \text{Opt}/(2 \log n)$... done.
2. $\text{Opt}_L + \text{Opt}_R \geq (1 - 1/(2 \log n))\text{Opt}$.
3. By induction: $S_L \geq \text{Opt}_L/(2 \log(n/2))$ and $S_R \geq \text{Opt}_R/(2 \log(n/2))$.
4. $S_L + S_R \geq \frac{(1 - 1/(2 \log n))\text{Opt}}{2 \log(n/2)}$
5. $\frac{2 \log(n/2)}{2 \log n - 2} \geq \frac{2 \log n - 1}{(2 \log n)(2 \log n - 2)} \geq \frac{1}{2 \log n}$.

Conclusion: If $S_M \leq \text{Opt}/(2 \log n)$, then $S_L + S_R \geq \text{Opt}/(2 \log n)$.

Algorithm is $2 \log n$ approximation.
Analysis

1. If $S_M \geq \text{Opt}/(2 \lg n)$... done.
2. $\text{Opt}_L + \text{Opt}_R \geq (1 - 1/(2 \lg n))\text{Opt}$.
3. By induction: $S_L \geq \text{Opt}_L/(2 \lg(n/2))$ and $S_R \geq \text{Opt}_R/(2 \lg(n/2))$.
4. $S_L + S_R \geq (1 - 1/(2 \lg n))\frac{\text{Opt}}{2 \lg(n/2)}$
5. $\frac{1}{2 \lg(n/2)} = 1 \frac{1}{2 \lg n - 2} - \frac{(2 \lg n)(2 \lg n - 2)}{2 \lg n - 1} \geq \frac{1}{(2 \lg n)(2 \lg n - 2)} \geq \frac{1}{2 \lg n}$.
Analysis

1. If $S_M \geq \text{Opt} / (2 \lg n)$... done.
2. $\text{Opt}_L + \text{Opt}_R \geq (1 - 1/(2 \lg n)) \text{Opt}$.
3. By induction: $S_L \geq \text{Opt}_L / (2 \lg (n/2))$ and $S_R \geq \text{Opt}_R / (2 \lg (n/2))$.
4. $S_L + S_R \geq \frac{(1 - 1/(2 \lg n)) \text{Opt}}{2 \lg (n/2)}$

$$\frac{2 \lg (n/2)}{1 - \frac{2 \lg n - 2}{2 \lg n}} \geq \frac{2 \lg n - 1}{(2 \lg n)(2 \lg n - 2)} \geq \frac{1}{2 \lg n}.$$
Analysis

1. If $S_M \geq \text{Opt}/(2 \lg n)$... done.
2. $\text{Opt}_L + \text{Opt}_R \geq (1 - 1/(2 \lg n))\text{Opt}$.
3. By induction: $S_L \geq \text{Opt}_L/(2 \lg(n/2))$ and $S_R \geq \text{Opt}_R/(2 \lg(n/2))$.
4. $S_L + S_R \geq \frac{(1-1/(2 \lg n))\text{Opt}}{2 \lg(n/2)}$

$$\frac{1}{2 \lg(n/2)} = \frac{1}{2 \lg n - 2} - \frac{(2 \lg n)(2 \lg n - 2)}{2 \lg n - 1} \geq \frac{2 \lg n - 1}{(2 \lg n)(2 \lg n - 2)} \geq \frac{1}{2 \lg n}.$$
Analysis

1. If \(S_M \geq \frac{\text{Opt}}{(2 \lg n)} \) ... done.
2. \(\text{Opt}_L + \text{Opt}_R \geq (1 - 1/(2 \lg n)) \text{Opt} \).
3. By induction: \(S_L \geq \frac{\text{Opt}_L}{(2 \lg (n/2))} \) and \(S_R \geq \frac{\text{Opt}_R}{(2 \lg (n/2))} \).
4. \(S_L + S_R \geq \frac{(1-1/(2 \lg n)) \text{Opt}}{2 \lg (n/2)} \).
5. \(\frac{1}{2 \lg (n/2)} - \frac{1}{2 \lg n - 2} \)

\[
\begin{align*}
&\geq \frac{2 \lg n - 1}{(2 \lg n)(2 \lg n - 2)} \geq \\
&\geq \frac{1}{2 \lg n - 2} \geq \frac{1}{2 \lg n}.
\end{align*}
\]
Notes