CS 473, Fall 2017
Homework 7 (due Nov 1 Wednesday at 8pm)

You may work in a group of at most 3 students. Carefully read http://engr.course.illinois.
edu/cs473/policies.html and http://engr.course.illinois.edu/cs473/integrity.htmll
One member of each group should submit via Gradescope.

1. [10 pts] Run the Ford—Fulkerson algorithm for the maximum flow problem on the following
example, starting with the initial flow shown. Here, the z/y label on an edge indicates that
the edge has capacity y and initial flow value x. At each iteration, show the residual graph
G, the augmenting path chosen, and the new flow values. Choose the augmenting path with
the largest bottleneck value at each iteration.

At the end, also show the minimum s-t cut generated by the algorithm.

2. [13 pts] Given an undirected graph G = (V, E) and an integer d, we want determine whether
it is possible to direct the edges so that the resulting directed graph has maximum out-
degree at most d. Describe how to solve this problem by reduction to maximum flow. Prove
correctness of your method.

Example: for the undirected graph below (left) and d = 2, the answer is yes, and one solution
is shown on the right (there are many other solutions).

- o«

Hint: start with a bipartite graph where the vertices on the left side are the edges in G and
the vertices on the right side are the vertices in G. Then add a source and a sink, set capacity
of each edge appropriately. ..

3. [27 pts] Given a bipartite graph G = (V, E) with n vertices and m edges, we want to find
the largest independent set I, i.e., a subset I C V such that no two vertices in I are adjacent

in G.


http://engr.course.illinois.edu/cs473/policies.html
http://engr.course.illinois.edu/cs473/policies.html
http://engr.course.illinois.edu/cs473/integrity.html

One way to solve the problem is to construct a flow network (a directed graph) G' = (V' U
{s,t}, E"), where s is the source and ¢ is the sink. Let V7 and Vg denote the left and right
side of V' in G. For each u € Vp, we add the directed edge (s,u) to E’. For each v € Vg,
we add the directed edge (v,t) to E’. For each wv € E with u € V, and v € Vg, we add the
directed edge (u,v) to G'. All edges have capacity 1. (This is the same flow network we have
used to reduce maximum bipartite matching to maximum flow.)

(a)

[6 pts] Prove that if there is an independent set in G of size k, then there is an (s, t)-cut
in G’ of capacity n — k.

[7 pts] Conversely, prove that if there is an (s,t)-cut in G’ of capacity n — k, then there
is an independent set in G of size k.

[2 pts] Conclude that there is a polynomial-time algorithm to compute a largest inde-
pendent set in G.

[12 pts] A geometric application. Given a set P of n points in 2D, we want to find a
subset ) C P of the largest size such that no two points in @ have FEuclidean distance
more than 1. (This problem is motivated by applications to clustering: we can think of
@ as a cluster of points.) Describe a polynomial-time algorithm to solve this problem,
using part (c) as a black box. (Note: You can still do part (d) without knowing the
solution to (a)—(c). Also, there is no need to optimize the running time so long as it is
polynomial.)

Hint: first pretend that we know the farthest pair qg, g1 of points in ), which has distance
d(qo,q1) < 1. The remaining points R = @ —{qo, g1} must lie inside the intersection Z of
two circular disks centered at gg and ¢; of radius d(qo, q1). What does Z look like? We
want a largest subset R in Z where no two points in R have distance more than d(qg, ¢1)-
Why does the problem reduce to independent set in a bipartite graph?



