
CS 473, Fall 2017
Homework 6 (due Oct 25 Wednesday at 8pm)

You may work in a group of at most 3 students. Carefully read http://engr.course.illinois.

edu/cs473/policies.html and http://engr.course.illinois.edu/cs473/integrity.html.
One member of each group should submit via Gradescope.

1. [15 pts] (This is a tougher version of the last problem from the practice midterm.) We are
given an array A[1, . . . , n] that contains a super-majority element, i.e., an element that occurs
> 2n/3 times. We want to find an index i such that A[i] is a super-majority element, if it
exists. Design and analyze a Monte Carlo algorithm to solve the problem with probability of
error less than 1/n100. Aim for the best running time you can obtain (which should be much
better than linear).

[Hint: for the analysis, use Chernoff bound.]

2. [15 pts] We are given a collection of m subsets A1, . . . , Am ⊆ {1, . . . , n}, each of even size.
We say that a subset S ⊆ {1, . . . , n} is a splitter if Ai intersects both S and its complement
for all i = 1, . . . ,m, i.e., Ai∩S 6= ∅ and Ai∩Sc 6= ∅ (where Sc denotes the complement of S).
The problem of finding a splitter is NP-hard in general, but we will consider a special case:

We say that a subset P ⊆ {1, . . . , n} is a perfect splitter if |Ai ∩ P | = |Ai ∩ P c| for all
i = 1, . . . ,m. For any input instance for which we know the existence of a perfect splitter
(but do not know the perfect splitter itself), design and analyze a Monte Carlo algorithm
that finds a splitter in polynomial time. (The splitter found does not have to be perfect.)

[Hint: imitate Papadimitriou’s SAT algorithm. . . ]

3. [15 pts] We are given a (unweighted) bipartite graph G with n vertices and m edges. Suppose
we have already computed a maximum matching M in G. Now suppose we delete a vertex v
from G and all its incident edges. Let G′ be the new graph (with n − 1 vertices). Describe
how to efficiently compute a new maximum matching M ′ in G′. (Your algorithm should be
faster than re-running a matching algorithm from scratch. Remember to prove correctness of
your algorithm.)

1

http://engr.course.illinois.edu/cs473/policies.html
http://engr.course.illinois.edu/cs473/policies.html
http://engr.course.illinois.edu/cs473/integrity.html

