CS 473, Fall 2017
Homework 5 (due Oct 18 Wednesday at 8pm)

You may work in a group of at most 3 students. Carefully read http://engr.course.illinois.
edu/cs473/policies.html and http://engr.course.illinois.edu/cs473/integrity.htmll
One member of each group should submit via Gradescope.

1. [17 pts] In this problem, we will investigate a simpler family of hash functions that satisfies
a weaker version of universality (with some extra logarithmic factors), but has other nicer
properties useful for certain applications.

Let m be a given integer. Let pi,...,pg be the list of all prime numbers at most m. You
may assume that this list has been precomputed and you may use the known fact that
k = ©(m/logm) (obtaining really tight bounds for k is the subject of the well-known “Prime
Number Theorem”).

Pick a random index j € {1,...,k} and define h; : {0,1,...,U —1} = {0,1,...,m — 1} by
hj(xz) = x mod p;.

(a) [7 pts| For any fixed z,y € {0,1,...,U —1} with « # y, prove that Pr;[h;(x) = h;(y)] <

O(logmniogU).

(Hint: can you upper-bound the number of distinct prime divisors that a number may
have?)

(b) [10 pts] Recall the following problem from Homework 1: Given three sets of integers A,
B, and C with |A|+|B|+|C| = n, we want to decide whether there exist elements a € A,
b € B, and ¢ € C such that ¢ = a + b. Prof. X claims to have discovered an O(n!9)-
time algorithm to solve the special case of the problem when A, B,C C {0,1,...,n%}.
Show how to use Prof. X’s algorithm to solve the more general case of the problem
when A, B,C C {0,1,...,n'%} by a Monte Carlo O(n!%)-time algorithm with error
probability at most 1/4.
(Hint: use (a). The property that hj(a) + h;(b) is equal to hj(a + b) or hj(a +b) + p;
may be helpful...)

2. [23 pts] Consider the following geometric problem: given a set P of n points in 2D, with
integer coordinates from {0,1,...,U — 1}, find a closest pair—i.e., 2 points p,q € P (p # q)
such that the (Euclidean) distance between p and ¢ is the smallest. We denote the distance
of the closest pair by §(P).

An O(n?)-time algorithm for this problem is trivial, and you can find an O(nlogn)-time
divide-and-conquer algorithm in 2D in some textbooks. In this question, we give a different,
faster randomized algorithm (which has the added advantage that it can be extended to
higher dimensions and to other problems).

http://engr.course.illinois.edu/cs473/policies.html
http://engr.course.illinois.edu/cs473/policies.html
http://engr.course.illinois.edu/cs473/integrity.html

(a) [10 pts] First give an O(n)-expected-time (Las Vegas) algorithm for the easier decision
problem: given a value r, decide whether §(P) < r.
(Hints: Build a uniform grid where each cell is an (r/2) x (r/2) square. Use hashing.
How many points can a grid cell have? For each grid cell, how many grid cells are of
distance at most r7)

(b) [13 pts] Now, consider the following recursive Las Vegas algorithm to compute §(P):

Closest-Pair(P):

1. if |P| <100 then return answer by brute force

2. partition P into subsets P, ..., Py each with at most [n/20] points
3. let S={(i,j)|1<i<j<20}

4. r=o00

5. for each (i,7) € S in random order do

6 if (5(Pz U Pj) < r then
7 r = Closest-Pair(F; U P))
8. return r

Explain why the algorithm is always correct, and analyze its expected running time by
solving a recurrence.

(Hints: Where is (a) used? What is the size of S7 According to a result from class, how
many times (in expectation) is line 7 performed?)

