
CS 473, Fall 2017
Homework 5 (due Oct 18 Wednesday at 8pm)

You may work in a group of at most 3 students. Carefully read http://engr.course.illinois.

edu/cs473/policies.html and http://engr.course.illinois.edu/cs473/integrity.html.
One member of each group should submit via Gradescope.

1. [17 pts] In this problem, we will investigate a simpler family of hash functions that satisfies
a weaker version of universality (with some extra logarithmic factors), but has other nicer
properties useful for certain applications.

Let m be a given integer. Let p1, . . . , pk be the list of all prime numbers at most m. You
may assume that this list has been precomputed and you may use the known fact that
k = Θ(m/ logm) (obtaining really tight bounds for k is the subject of the well-known “Prime
Number Theorem”).

Pick a random index j ∈ {1, . . . , k} and define hj : {0, 1, . . . , U − 1} → {0, 1, . . . ,m− 1} by

hj(x) = x mod pj .

(a) [7 pts] For any fixed x, y ∈ {0, 1, . . . , U−1} with x 6= y, prove that Prj [hj(x) = hj(y)] ≤
O(logm logU

m).

(Hint: can you upper-bound the number of distinct prime divisors that a number may
have?)

(b) [10 pts] Recall the following problem from Homework 1: Given three sets of integers A,
B, and C with |A|+ |B|+ |C| = n, we want to decide whether there exist elements a ∈ A,
b ∈ B, and c ∈ C such that c = a + b. Prof. X claims to have discovered an O(n1.99)-
time algorithm to solve the special case of the problem when A,B,C ⊆ {0, 1, . . . , n4}.
Show how to use Prof. X’s algorithm to solve the more general case of the problem
when A,B,C ⊆ {0, 1, . . . , n100} by a Monte Carlo O(n1.99)-time algorithm with error
probability at most 1/4.

(Hint: use (a). The property that hj(a) + hj(b) is equal to hj(a + b) or hj(a + b) + pj
may be helpful. . .)

2. [23 pts] Consider the following geometric problem: given a set P of n points in 2D, with
integer coordinates from {0, 1, . . . , U − 1}, find a closest pair—i.e., 2 points p, q ∈ P (p 6= q)
such that the (Euclidean) distance between p and q is the smallest. We denote the distance
of the closest pair by δ(P).

An O(n2)-time algorithm for this problem is trivial, and you can find an O(n log n)-time
divide-and-conquer algorithm in 2D in some textbooks. In this question, we give a different,
faster randomized algorithm (which has the added advantage that it can be extended to
higher dimensions and to other problems).

1

http://engr.course.illinois.edu/cs473/policies.html
http://engr.course.illinois.edu/cs473/policies.html
http://engr.course.illinois.edu/cs473/integrity.html

(a) [10 pts] First give an O(n)-expected-time (Las Vegas) algorithm for the easier decision
problem: given a value r, decide whether δ(P) < r.

(Hints: Build a uniform grid where each cell is an (r/2) × (r/2) square. Use hashing.
How many points can a grid cell have? For each grid cell, how many grid cells are of
distance at most r?)

(b) [13 pts] Now, consider the following recursive Las Vegas algorithm to compute δ(P):

Closest-Pair(P):

1. if |P | ≤ 100 then return answer by brute force
2. partition P into subsets P1, . . . , P20 each with at most dn/20e points
3. let S = {(i, j) | 1 ≤ i < j ≤ 20}
4. r =∞
5. for each (i, j) ∈ S in random order do
6. if δ(Pi ∪ Pj) < r then
7. r = Closest-Pair(Pi ∪ Pj)
8. return r

Explain why the algorithm is always correct, and analyze its expected running time by
solving a recurrence.

(Hints: Where is (a) used? What is the size of S? According to a result from class, how
many times (in expectation) is line 7 performed?)

2

