CS 473, Fall 2017
 Homework 1 (due September 13 Wednesday at 8pm)

You may work in a group of at most 3 students. Carefully read http://engr.course.illinois. edu/cs473/policies.html and http://engr.course.illinois.edu/cs473/integrity.html. One member of each group should submit via Gradescope.

1. [15 pts] Given numbers a_{1}, \ldots, a_{n}, describe an efficient algorithm to compute the coefficients of the polynomial $\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)$. You may assume that each arithmetic operation takes constant time (don't worry about the sizes of the coefficients getting big).
[Note: I believe getting exactly $O(n \log n)$ time is still open, but you should be able to get close (within logarithmic factors) to $O(n \log n)$.]
2. [23 pts] Given three sets of integers A, B, and C with a total of $|A|+|B|+|C|=n$ elements, we want to decide whether there exist elements $a \in A, b \in B$, and $c \in C$ such that $c=a+b$. It is not difficult to obtain a near $O\left(n^{2}\right)$ time algorithm for this problem. Here, we will explore subquadratic algorithms for special cases.
(a) $[9 p t s]$ For the case when $A, B, C \subset\left\{1, \ldots, n^{1.9}\right\}$, give an algorithm that runs in $O\left(n^{1.9} \log n\right)$ time, by using FFT.
(b) $[5 \mathrm{pts}]$ For the case when B and C have at most r elements (with no restriction on A), give an algorithm that runs in $O\left(r^{2} \log n\right)$ time, assuming that A is stored in a sorted array.
(c) $[9 p t s]$ For the case when $A \subset\left\{1, \ldots, n^{1.9}\right\}$ and B and C consist of integers but with no restrictions on the range, give an algorithm that runs in $O\left(n^{t}\right)$ time for some constant t strictly smaller than 2 .
[Hint: for B and C, divide into intervals of length $n^{1.9}$. For intervals with fewer than r elements of B and C, use one algorithm. For intervals with more than r elements of B and C (how many such intervals can there be?), use another algorithm. How should we set the parameter r ?]
3. [12 pts] We are given a weighted complete graph $G=(V, E)$, where each pair of vertices u and v define a distance $d(u, v)$. Here, distances are symmetric (i.e., $d(u, v)=d(v, u)$). In the 2-center problem, we want two vertices $u, v \in V$ such that

$$
r_{u v}:=\max _{w \in V} \min \{d(u, w), d(v, w)\}
$$

is as small as possible. (Motivation: we want to build two "hospitals" u and v, such that the maximum "response time" to any site is as small as possible.)

Give a subcubic algorithm to solve this problem.
[Hint: first solve the decision problem (given a value R, decide whether the optimal value $\min _{u, v \in V} r_{u v}$ is less than R).]

