CS 473, Fall 2017 Homework 0 (due September 6 Wednesday at 8pm)

For Homework 0, you should work *independently*. Carefully read http://engr.course.illinois.edu/cs473/policies.html and http://engr.course.illinois.edu/cs473/integrity.html. Submit via Gradescope.

- 1. [16 pts]
 - (a) [3 pts] Solve the following recurrence (i.e., give tight Θ bound): $T(n) = 3T(n/4) + \sqrt{n}$ if $n \ge 4$, and T(n) = 1 if n < 4. Justification is not necessary.
 - (b) [7 pts] Consider the following recurrence: $T(n) = 2T(\sqrt{n}) + \log n$ if $n \ge 4$, and T(n) = 3 if n < 4. Use induction to prove that $T(n) = O(\log n \log \log n)$.
 - (c) [6 pts] The following recurrence bounds the number of comparisons of array elements made by the SMAWK algorithm:

$$T(m,n) = \min \{T(m/2,n) + n, T(m,m) + n + m\}$$

if m > 1, and T(1,n) = n. As noted in class, a linear upper bound on T(n,n) can be obtained by "alternating" between the two options: $T(n,n) \leq T(n/2,n) + n \leq (T(n/2,n/2) + n + n/2) + n = T(n/2,n/2) + 5n/2$, which implies $T(n,n) \leq 5n + O(1)$. Improve the constant factor, i.e., prove that the above function satisfies $T(n,n) \leq cn + O(1)$ for some constant c < 5. (Try to make c as small as you can.)

2. $[12 \ pts]$ We are given an $n \times n$ matrix A where all entries are integers from $\{1, 2, \ldots, U\}$, with the property that all rows are monotonically increasing and all columns are monotonically increasing, i.e., i < i' implies $A[i, j] \leq A[i', j]$, and j < j' implies $A[i, j] \leq A[i, j']$. Describe an $O(n \log U)$ -time algorithm to find the median element in A (i.e., the $(n^2/2)$ -th smallest element).

[Hint: first describe an O(n)-time algorithm to count the number of elements less than a given value.]

3. [12 pts] We are given a set of n line segments in 2D, where each line segment is either vertical (with endpoints (x_i, y_i) and (x_i, y'_i) for some x_i, y_i, y'_i) or or horizontal (with endpoints (x_i, y_i) and (x'_i, y_i) for some x_i, x'_i, y_i). We are also given two points $s = (x_s, y_s)$ and $t = (x_t, y_t)$. Describe an efficient algorithm to decide whether there is a way to travel from s to t without crossing any of the given line segments. [Hint: consider an $n \times n$ grid, define a graph (with how many vertices and edges?), and apply a standard graph search algorithm.]

