CS 473, Fall 2017
 Homework 0 (due September 6 Wednesday at 8pm)

For Homework 0, you should work independently. Carefully read http://engr.course.illinois. edu/cs473/policies.html and/http://engr.course.illinois.edu/cs473/integrity.html, Submit via Gradescope.

1. [16 pts]
(a) $[3 \mathrm{pts}]$ Solve the following recurrence (i.e., give tight Θ bound): $T(n)=3 T(n / 4)+\sqrt{n}$ if $n \geq 4$, and $T(n)=1$ if $n<4$. Justification is not necessary.
(b) [7pts] Consider the following recurrence: $T(n)=2 T(\sqrt{n})+\log n$ if $n \geq 4$, and $T(n)=3$ if $n<4$. Use induction to prove that $T(n)=O(\log n \log \log n)$.
(c) $[6 \mathrm{pts}]$ The following recurrence bounds the number of comparisons of array elements made by the SMAWK algorithm:

$$
T(m, n)=\min \{T(m / 2, n)+n, T(m, m)+n+m\}
$$

if $m>1$, and $T(1, n)=n$. As noted in class, a linear upper bound on $T(n, n)$ can be obtained by "alternating" between the two options: $T(n, n) \leq T(n / 2, n)+n \leq$ $(T(n / 2, n / 2)+n+n / 2)+n=T(n / 2, n / 2)+5 n / 2$, which implies $T(n, n) \leq 5 n+O(1)$. Improve the constant factor, i.e., prove that the above function satisfies $T(n, n) \leq c n+$ $O(1)$ for some constant $c<5$. (Try to make c as small as you can.)
2. [12 pts] We are given an $n \times n$ matrix A where all entries are integers from $\{1,2, \ldots, U\}$, with the property that all rows are monotonically increasing and all columns are monotonically increasing, i.e., $i<i^{\prime}$ implies $A[i, j] \leq A\left[i^{\prime}, j\right]$, and $j<j^{\prime}$ implies $A[i, j] \leq A\left[i, j^{\prime}\right]$. Describe an $O(n \log U)$-time algorithm to find the median element in A (i.e., the $\left(n^{2} / 2\right)$-th smallest element).
[Hint: first describe an $O(n)$-time algorithm to count the number of elements less than a given value.]
3. [12 pts] We are given a set of n line segments in 2D, where each line segment is either vertical (with endpoints $\left(x_{i}, y_{i}\right)$ and $\left(x_{i}, y_{i}^{\prime}\right)$ for some $\left.x_{i}, y_{i}, y_{i}^{\prime}\right)$ or or horizontal (with endpoints (x_{i}, y_{i}) and $\left(x_{i}^{\prime}, y_{i}\right)$ for some $\left.x_{i}, x_{i}^{\prime}, y_{i}\right)$. We are also given two points $s=\left(x_{s}, y_{s}\right)$ and $t=\left(x_{t}, y_{t}\right)$. Describe an efficient algorithm to decide whether there is a way to travel from s to t without crossing any of the given line segments. [Hint: consider an $n \times n$ grid, define a graph (with how many vertices and edges?), and apply a standard graph search algorithm.]

