
CS 473, Fall 2017
Homework 0 (due September 6 Wednesday at 8pm)

For Homework 0, you should work independently. Carefully read http://engr.course.illinois.

edu/cs473/policies.html and http://engr.course.illinois.edu/cs473/integrity.html. Sub-
mit via Gradescope.

1. [16 pts]

(a) [3 pts] Solve the following recurrence (i.e., give tight Θ bound): T (n) = 3T (n/4) +
√
n

if n ≥ 4, and T (n) = 1 if n < 4. Justification is not necessary.

(b) [7 pts] Consider the following recurrence: T (n) = 2T (
√
n)+log n if n ≥ 4, and T (n) = 3

if n < 4. Use induction to prove that T (n) = O(log n log log n).

(c) [6 pts] The following recurrence bounds the number of comparisons of array elements
made by the SMAWK algorithm:

T (m,n) = min {T (m/2, n) + n, T (m,m) + n + m}

if m > 1, and T (1, n) = n. As noted in class, a linear upper bound on T (n, n) can
be obtained by “alternating” between the two options: T (n, n) ≤ T (n/2, n) + n ≤
(T (n/2, n/2) + n + n/2) + n = T (n/2, n/2) + 5n/2, which implies T (n, n) ≤ 5n + O(1).
Improve the constant factor, i.e., prove that the above function satisfies T (n, n) ≤ cn +
O(1) for some constant c < 5. (Try to make c as small as you can.)

2. [12 pts] We are given an n×n matrix A where all entries are integers from {1, 2, . . . , U}, with
the property that all rows are monotonically increasing and all columns are monotonically
increasing, i.e., i < i′ implies A[i, j] ≤ A[i′, j], and j < j′ implies A[i, j] ≤ A[i, j′]. Describe
an O(n logU)-time algorithm to find the median element in A (i.e., the (n2/2)-th smallest
element).

[Hint: first describe an O(n)-time algorithm to count the number of elements less than a
given value.]

1

http://engr.course.illinois.edu/cs473/policies.html
http://engr.course.illinois.edu/cs473/policies.html
http://engr.course.illinois.edu/cs473/integrity.html


3. [12 pts] We are given a set of n line segments in 2D, where each line segment is either vertical
(with endpoints (xi, yi) and (xi, y

′
i) for some xi, yi, y

′
i) or or horizontal (with endpoints (xi, yi)

and (x′i, yi) for some xi, x
′
i, yi). We are also given two points s = (xs, ys) and t = (xt, yt).

Describe an efficient algorithm to decide whether there is a way to travel from s to t without
crossing any of the given line segments. [Hint: consider an n × n grid, define a graph (with
how many vertices and edges?), and apply a standard graph search algorithm.]

s

t

(answer is yes)

2


