Approximation Algorithms for TSP

Lecture 26
Dec 2, 2016
Lincoln’s Circuit Court Tour

Metamora → Bloomington
Bloomington → Clinton
Clinton → Urbana
Urbana → Danville
Danville → Monticello
Monticello → Taylorville
Taylorville → Decator
Decator → Shelbyville
Shelbyville → Paris
Paris → Pekin
Pekin → Springfield
Springfield → Mt. Pulaski
Mt. Pulaski → Bloomington
Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem

Input: A graph \(G = (V, E) \) with edge costs \(c : E \to \mathbb{R}_+ \).

Goal: Find a Hamiltonian Cycle of minimum total edge cost

Graph can be undirected or directed. Problem differs substantially. We will first focus on undirected graphs.
Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem

Input: A graph \(G = (V, E) \) with edge costs \(c : E \rightarrow \mathbb{R}_+ \).

Goal: Find a Hamiltonian Cycle of minimum total edge cost

Graph can be undirected or directed. Problem differs substantially. We will first focus on undirected graphs.

Assumption for simplicity: Graph \(G = (V, E) \) is a complete graph. Can add missing edges with infinite cost to make graph complete.

Observation: Once graph is complete there is always a Hamiltonian cycle but only Hamiltonian cycles of finite cost are Hamiltonian cycles in the original graph.
Important Special Cases

Metric-TSP: $G = (V, E)$ is a complete graph and c defines a metric space. $c(u, v) = c(v, u)$ for all u, v and $c(u, w) \leq c(u, v) + c(v, w)$ for all u, v, w.

Geometric-TSP: V is a set of points in some Euclidean d-dimensional space \mathbb{R}^d and the distance between points is defined by some norm such as standard Euclidean distance, L_1/Manhatta distance etc.

Another interpretation of Metric-TSP: Given $G = (V, E)$ with edges costs c, find a tour of minimum cost that visits all vertices but can visit a vertex more than once.
Inapproximability of TSP

Observation: In the general setting TSP does not admit any bounded approximation.

- Finding or even deciding whether a graph $G = (V, E)$ has Hamiltonian Cycle is NP-Hard
- Alternatively, suppose $G = (V, E)$ is a simple graph that we complete with infinite cost edges. If G has a Hamilton Cycle then there is a TSP tour of cost n else it is cost ∞.
Metric-TSP

Metric-TSP is simpler and perhaps a more natural problem in some settings.

Theorem

Metric-TSP is NP-Hard.

Proof.

Given $G = (V, E)$ we create a new complete graph $G' = (V, E')$ with the following costs. If $e \in E$ cost $c(e) = 1$. If $e \in E' - E$ cost $c(e) = 2$. Easy to verify that c satisfies metric properties. Moreover, G' has TSP tour of cost n iff G has a Hamiltonian Cycle.
MST-Heuristic\((G = (V, E), c)\)

- Compute an minimum spanning tree (MST) \(T\) in \(G\)
- Obtain an Eulerian graph \(H = 2T\) by doubling edges of \(T\)
- An Eulerian tour of \(H\) gives a tour of \(G\)
- Obtain Hamiltonian cycle by shortcutting the tour
Lemma

Let \(c(T) = \sum_{e \in T} c(e) \) be cost of MST. We have \(c(T) \leq \text{OPT} \).
Analyzing MST-Heuristic

Lemma

Let $c(T) = \sum_{e \in T} c(e)$ be cost of MST. We have $c(T) \leq \text{OPT}$.

Proof.

A TSP tour is a connected subgraph of G and MST is the cheapest connected subgraph of G.
Analyzing MST-Heuristic

Lemma

Let \(c(T) = \sum_{e \in T} c(e) \) be cost of MST. We have \(c(T) \leq \text{OPT} \).

Proof.

A TSP tour is a connected subgraph of \(G \) and MST is the cheapest connected subgraph of \(G \).

Theorem

MST-Heuristic gives a 2-approximation for Metric-TSP.

Proof.

Cost of tour is at most \(2c(T) \) and hence MST-Heuristic gives a 2-approximation.
Background on Eulerian graphs

Definition

An *Euler tour* of an undirected multigraph $G = (V, E)$ is a closed walk that visits each edge exactly once. A graph is Eulerian if it has an Euler tour.
Background on Eulerian graphs

Definition

An *Euler tour* of an undirected multigraph $G = (V, E)$ is a closed walk that visits each edge exactly once. A graph is Eulerian if it has an Euler tour.

Theorem (Euler)

An undirected multigraph $G = (V, E)$ is Eulerian iff G is connected and every vertex degree is even.
Background on Eulerian graphs

Definition

An *Euler tour* of an undirected multigraph $G = (V, E)$ is a closed walk that visits each edge exactly once. A graph is Eulerian if it has an Euler tour.

Theorem (Euler)

An undirected multigraph $G = (V, E)$ is Eulerian iff G is connected and every vertex degree is even.

Theorem

A directed multigraph $G = (V, E)$ is Eulerian iff G is weakly connected and for each vertex v, $\text{indeg}(v) = \text{outdeg}(v)$.
Improved approximation for Metric-TSP

How can we improve the MST-heuristic?

Observation: Finding optimum TSP tour in G is same as finding minimum cost Eulerian subgraph of G (allowing duplicate copies of edges).
Improved approximation for Metric-TSP

How can we improve the MST-heuristic?

Observation: Finding optimum TSP tour in G is same as finding minimum cost Eulerian subgraph of G (allowing duplicate copies of edges).

Christofides-Heuristic ($G = (V, E), c$)

1. Compute an minimum spanning tree (MST) T in G
2. Add edges to T to make Eulerian graph H
3. An Eulerian tour of H gives a tour of G
4. Obtain Hamiltonian cycle by shortcutting the tour

How do we edges to make T Eulerian?
Christofides Heuristic: 3/2 approximation

\textbf{Christofides-Heuristic} \((G = (V, E), c)\)

- Compute a minimum spanning tree (MST) \(T\) in \(G\)
- Let \(S\) be vertices of odd degree in \(T\) (Note: \(|S|\) is even)
- Find a minimum cost matching \(M\) on \(S\) in \(G\)
- Add \(M\) to \(T\) to obtain Eulerian graph \(H\)
- An Eulerian tour of \(H\) gives a tour of \(G\)
- Obtain Hamiltonian cycle by shortcutting the tour

```
Christofides-Heuristic(G = (V, E), c)
Compute an minimum spanning tree (MST) T in G
Let S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost matching M on S in G
Add M to T to obtain Eulerian graph H
An Eulerian tour of H gives a tour of G
Obtain Hamiltonian cycle by shortcutting the tour
```
Analysis of Christofides Heuristic

Main lemma:

Lemma
\[c(M) \leq \frac{OPT}{2}. \]

Assuming lemma:

Theorem
Christofides heuristic returns a tour of cost at most \(\frac{3OPT}{2} \).

Proof.
\[c(H) = c(T) + c(M) \leq OPT + \frac{OPT}{2} \leq \frac{3OPT}{2}. \] Cost of tour is at most cost of \(H \).
Lemma

Suppose $G = (V, E)$ is a metric and $S \subseteq V$ be a subset of vertices. Then there is a TSP tour in $G[S]$ (the graph induced on S) of cost at most OPT.

Proof.

Let $C = v_1, v_2, ..., v_n, v_1$ be an optimum tour of cost OPT in G and let $S = \{v_{i_1}, v_{i_2}, ..., v_{i_k}\}$ where, without loss of generality $i_1 < i_2 < ... < i_k$. Then consider the tour $C' = v_{i_1}, v_{i_2}, ..., v_{i_k}, v_{i_1}$ in $G[S]$. The cost of this tour is at most cost of C by shortcutting.
Lemma

Suppose $G = (V, E)$ is a metric and $S \subset V$ be a subset of vertices. Then there is a TSP tour in $G[S]$ (the graph induced on S) of cost at most OPT.

Proof.

Let $C = v_1, v_2, \ldots, v_n, v_1$ be an optimum tour of cost OPT in G and let $S = \{v_{i_1}, v_{i_2}, \ldots, v_{i_k}\}$ where, without loss of generality $i_1 < i_2 \ldots < i_k$. Then consider the tour $C' = v_{i_1}, v_{i_2}, \ldots, v_{i_k}, v_1$ in $G[S]$. The cost of this tour is at most cost of C by shortcutting.
Proof of lemma for Christofides heuristic

Lemma

\[c(M) \leq \frac{OPT}{2}.\]

Recall that \(M\) is a matching on \(S\) the set of odd degree nodes in \(T\). Recall that \(|S|\) is even.

Proof.

From previous lemma, there is tour of cost \(OPT\) for \(S\) in \(G[S]\). Wlog let this tour be \(v_1, v_2, \ldots, v_{2k}, v_1\) where \(S = \{v_1, v_2, \ldots, v_{2k}\}\). Consider two matchings \(M_a\) and \(M_b\) where

\[M_a = \{(v_1, v_2), (v_3, v_4), \ldots, (v_{2k-1}, v_{2k})\}\] and

\[M_b = \{(v_2, v_3), (v_4, v_5), \ldots, (v_{2k}, v_1)\}.

\(M_a \cup M_b\) is set of edges of tour so \(c(M_a) + c(M_b) \leq OPT\) and hence one of them has cost less than \(OPT/2\).
Other comments

Christofides heuristic has not been improved since 1976!
Major open problem in approximation algorithms.

For points in any fixed dimension d there is a polynomial-time approximation scheme. For any fixed $\epsilon > 0$ a tour of cost $(1 + \epsilon)OPT$ can be computed in polynomial time. [Arora 1996, Mitchell 1996].

Excellent practical code exists for solving large scale instances of TSP that arise in several applications. See Concorde TSP Solver by Applegate, Bixby, Chvatal, Cook.
Question: What about directed graphs?

Equivalent of Metric-TSP is Asymmetric-TSP (ATSP)

- Input is a complete directed graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{R}_+$.
- Edge costs are not necessarily symmetric. That is $c(u, v)$ can be different from $c(v, u)$.
- Edge costs satisfy asymmetric triangle inequality: $c(u, w) \leq c(u, v) + c(v, w)$ for all $u, v, w \in V$.
Directed Graphs and Asymmetric TSP (ATSP)

Question: What about directed graphs?

Equivalent of Metric-TSP is Asymmetric-TSP (ATSP)

- Input is a complete directed graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{R}_+$.
- Edge costs are not necessarily symmetric. That is $c(u, v)$ can be different from $c(v, u)$
- Edge costs satisfy asymmetric triangle inequality:
 $$c(u, w) \leq c(u, v) + c(v, w) \text{ for all } u, v, w \in V.$$

Alternate interpretation: given directed graph $G = (V, E)$ find a closed walk that visits all vertices (can visit a vertex more than once).
Alternate interpretation: given directed graph $G = (V, E)$ find a closed walk that visits all vertices (can visit a vertex more than once).

Same as finding a minimum cost connected Eulerian subgraph of G.
Approximation for ATSP

Harder than Metric-TSP

- Simple $\log_2 n$ approximation from 1980.
- Improved to $O(\log n / \log \log n)$-approximation in 2010.
- Further improved to $O((\log \log n)^c)$-approximation in 2015.

Believed that a constant factor approximation exists via a natural LP relaxation.
The $O(\log n)$ Approximation

Recall that a cycle cover is a collection of node disjoint cycles that contain all nodes.

\[
\text{Cycle Shrinking Algorithm}(G(V, A), c: A \rightarrow \mathcal{R}^+) : \\
\text{If } |V| = 1 \text{ output the trivial cycle consisting of } V \\
\text{Find a minimum cost cycle cover with cycles } C_1, \ldots, C_k \\
\text{From each } C_i \text{ pick an arbitrary proxy node } v_i \\
\text{Let } S = \{v_1, v_2, \ldots, v_k\} \\
\text{Recursively solve problem on } G[S] \text{ to obtain a solution } C \\
C' = C \cup C_1 \cup C_2 \ldots C_k \text{ is a Eulerian graph.} \\
\text{Shortcut } C' \text{ to obtain a cycle on } V \text{ and output } C'.
\]
Lemma

Cost of a cycle cover is at most OPT.

Analysis
Analysis

Lemma

Cost of a cycle cover is at most OPT.

Lemma

Suppose $G = (V, E)$ is a directed graph with edge costs that satisfies asymmetric triangle inequality and $S \subset V$ be a subset of vertices. Then there is a TSP tour in $G[S]$ (the graph induced on S) of cost at most OPT.

Lemma

The number of vertices shrinks by half in each iteration and hence total of at most $\lceil \log n \rceil$ cycle covers.

Hence total cost of all cycle covers is at most $\lceil \log n \rceil \cdot \text{OPT}$.