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Outline

Simplex: Intuition and Implementation Details

Computing starting vertex: equivalent to solving an LP!

Infeasibility, Unboundedness, and Degeneracy.

Duality: Bounding the objective value through weak-duality

Strong Duality, Cone view.
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Part I

Recall
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Feasible Region and Convexity

Canonical Form
Given A ∈ Rn×d, b ∈ Rn×1 and c ∈ R1×d, find x ∈ Rd×1

max : c · x
s.t. Ax ≤ b
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Linear Inequalities Define a Polyhedron

If
∑

j aijxj ≤ bi hold we equality, we say the constraint/hyperplane i
is tight
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Vertex Solution

Optimizing linear objective over a polyhedron⇒ Vertex solution

Basic Feasible Solution: feasible, and d linearly independent tight
constraints.
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Summary

1 Each linear constraint defines a halfspace.

2 Feasible region, which is an intersection of halfspaces, is a
convex polyhedron.

3 Optimal value attained at a vertex of the polyhedron.
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Part II

Simplex
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Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions
Which neighbor to move to?

When to stop?

How much time does it take?
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Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ and optimal is x∗, then
c · x∗ > c · x̂.

How does (c · x) change as we move from x̂ to x∗ on the line joining
the two?

Strictly increases!

d = x∗ − x̂ is the direction from x̂ to x∗.

(c · d) = (c · x∗)− (c · x̂) > 0.

In x = x̂ + δd, as δ goes from 0 to 1, we move from x̂ to x∗.

c · x = c · x̂ + δ(c · d). Strictly increasing with δ!

Due to convexity, all of these are feasible points.
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Cone

Definition
Given a set of vectors D = {d1, . . . , dk}, the cone spanned by them
is just their positive linear combinations, i.e.,

cone(D) = {d | d =
k∑

i=1

λidi, where λi ≥ 0, ∀i}
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Cone at a Vertex

Let z1, . . . , zk be the neighboring vertices of x̂. And let di = zi − x̂
be the direction from x̂ to zi.

Lemma
Any feasible direction of
movement d from x̂ is in the
cone({d1, . . . , dk}).
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Improving Direction Implies Improving Neighbor

Lemma
If d ∈ cone({d1, . . . , dk}) and (c · d) > 0, then there exists di

such that (c · di) > 0.

Proof.
To the contrary suppose (c · di) ≤ 0, ∀i ≤ k.
Since d is a positive linear combination of di’s,

(c · d) = (c ·
∑k

i=1 λidi)

=
∑k

i=1 λi(c · di)
≤ 0 A contradiction!

Theorem
If vertex x̂ is not optimal then it has a neighbor where cost improves.
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How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Faces
Vertex: 0-dimensional face.
Edge: 1D face. . . .
Hyperplane: (d− 1)D face.

r linearly independent tight
hyperplanes forms d− r
dimensional face.

Vertices being of 0D, d L.I.
tight hyperplanes.

In 2-dimension (d = 2)

x2

x1

300

200
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How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Faces
Vertex: 0-dimensional face.
Edge: 1D face. . . .
Hyperplane: (d− 1)D face.

r linearly independent tight
constraints forms d− r
dimensional face.

Vertices (Basic feasible
solution) has d L.I. tight
constraints.

In 3-dimension (d = 3)

①

②

③

′

image source: webpage of Prof. Forbes W. Lewis
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How Many Neighbors a Vertex Has?
Geometry view...

One neighbor per tight hyperplane. Therefore typically d.

Suppose x′ is a neighbor of x̂,
then on the edge joining the
two d− 1 constraints are
tight.

These d− 1 are also tight at
both x̂ and x′.

One more constraints, say i,
is tight at x̂. “Relaxing” i at
x̂ leads to x′.

①

②

③

′

x

④
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Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers
Which neighbor to move to? One where objective value
increases.

When to stop? When no neighbor with better objective value.

How much time does it take? At most d neighbors to consider
in each step.
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Simplex in Higher Dimensions

Simplex Algorithm
1 Start at a vertex of the polytope.

2 Compare value of objective function at each of the d
“neighbors”.

3 Move to neighbor that improves objective function, and repeat
step 2.

4 If no improving neighbor, then stop.

Simplex is a greedy local-improvement algorithm! Works because a
local optimum is also a global optimum — convexity of polyhedra.

Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 39



Simplex in Higher Dimensions

Simplex Algorithm
1 Start at a vertex of the polytope.

2 Compare value of objective function at each of the d
“neighbors”.

3 Move to neighbor that improves objective function, and repeat
step 2.

4 If no improving neighbor, then stop.

Simplex is a greedy local-improvement algorithm! Works because a
local optimum is also a global optimum — convexity of polyhedra.

Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 39



Part III

Implementation of the Pivoting Step
(Moving to an improving neighbor)
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Moving to a Neighbor

Fix a vertex x̂. Let the d hyperplanes/constraints tight at x̂ be,

d∑
j=1

aijxj = bi, 1 ≤ i ≤ d Equivalently, Âx = b̂

A neighbor vertex x′ is connected
to x̂ by an edge.

d − 1 hyperplanes tight on this
edge.

To reach x′, one hyperplane has to
be relaxed, while maintaining other
d− 1 tight.

①

②

③

′

x

④
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Moving to a Neighbor (Contd.)

−Â
−1

=


...

...
d1 . . . dd
...

...


Lemma
Moving in direction di from x̂, all except constraint i remain tight.

Proof.
For a small ε > 0, let y = x̂ + ε(di), then

Ây = Â(x̂ + εdi) = Âx̂ + εÂ(−Â
−1

)(.,i)

= b̂ + ε[0, . . . ,−1, . . . , 0]T

Clearly,
∑

j akjyj = bk,∀k 6= i, and
∑

j aijyj = bi − ε < bi.

Thus, di is the direction on the edge obtained by relaxing hyperplane
i at vertex x̂.
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Computing the Neighbor

Move in di direction from x̂, i.e., x̂ + εdi, and STOP when hit a new
hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1
through d will be satisfied. For any k > d, where Ak is kth row of A,

Ak · (x̂ + εdi) ≤ bk ⇒ (Ak · x̂) + ε(Ak · di) ≤ bk

⇒ ε(Ak · di) ≤ bk − (Ak · x̂)

(If (Ak · di) > 0) ⇒ ε ≤ bk−(Ak·x̂)
Ak·di

(positive)

If moving towards hyperplane k

(If (Ak · di) < 0) ⇒ ε ≥ bk−(Ak·x̂)
Ak·di

(negative)

If moving away from hyperplane k.
No upper bound, and -ve lower bound!
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Computing the Neighbor

Algorithm

NextVertex(x̂, di)
Set ε←∞.
For k = d + 1 . . . n

ε′ ← bk−(Ak·x̂)
Ak·di

If ε′ > 0 and ε′ < ε then
set ε← ε′

If ε <∞ then return x̂ + εdi.
Else return null.

If (c · di) > 0 then the algorithm returns an improving neighbor.
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Factory Example

max : x1 + 6x2

s.t. 0 ≤ x1 ≤ 200
0 ≤ x2 ≤ 300
x1 + x2 ≤ 400

x̂ = (0, 0)

Â =

[
−1 0
0 −1

]
−Â
−1

=

[
1 0
0 1

]
= [d1 d2]

Moving in direction d1 gives
(200, 0)

Moving in direction d2 gives
(0, 300).
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Computing Starting Vertex
Equivalent to solving another LP!

Find an x such that Ax ≤ b.
If b ≥ 0 then trivial!

x = 0. Otherwise.

min : s
s.t.

∑
j aijxj − s ≤ bi, ∀i

s ≥ 0

Trivial feasible solution: x = 0, s = |mini bi|.

If Ax ≤ b feasible then optimal value of the above LP is s = 0.
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Solving Linear Programming in Practice

1 Näıve implementation of Simplex algorithm can be very
inefficient

– Exponential number of steps!
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Solving Linear Programming in Practice

1 Näıve implementation of Simplex algorithm can be very
inefficient

1 Choosing which neighbor to move to can significantly affect
running time

2 Very efficient Simplex-based algorithms exist
3 Simplex algorithm takes exponential time in the worst case but

works extremely well in practice with many improvements over
the years

2 Non Simplex based methods like interior point methods work
well for large problems.
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Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

1 major theoretical advance

2 highly impractical algorithm, not used at all in practice

3 routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time
algorithm, the interior point method.

1 very practical for some large problems and beats simplex

2 also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved
enormously and is the method of choice.
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Degeneracy

1 The linear program could be infeasible: No points satisfy the
constraints.

2 The linear program could be unbounded: Polygon unbounded in
the direction of the objective function.

3 More than d hyperplanes could be tight at a vertex, forming
more than d neighbors.
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Infeasibility: Example

maximize x1 + 6x2

subject to x1 ≤ 2 x2 ≤ 1 x1 + x2 ≥ 4
x1, x2 ≥ 0

Infeasibility has to do only with constraints.

No starting vertex for Simplex. How to detect this?

LP
min : s
s.t.

∑
j aijxj − s ≤ bi, ∀i

s ≥ 0
to find a feasible point will

have positive optimal.
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Unboundedness: Example

maximize x2

x1 + x2 ≥ 2

x1, x2 ≥ 0

Unboundedness depends on both constraints and the objective
function.

If unbounded in the direction of objective function, then NextVertex
will eventually return null
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Degeneracy and Cycling

More than d constraints are tight at vertex x̂. Say d + 1.

Suppose, we pick first d to form Â, and compute directions
d1, . . . , dd.

Then NextVertex(x̂, di) will encounter (d + 1)th constraint with
ε = 0 as an upper bound. Hence it will return x̂ again.

Same phenomenon will repeat!

This can be avoided by adding small random perturbation to bis.
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Feasible Solutions and Lower Bounds

Consider the program

maximize 4x1+ 2x2

subject to x1+ 3x2 ≤ 5
2x1− 4x2 ≤ 10

x1+ x2 ≤ 7
x1 ≤ 5

1 (0, 1) satisfies all the constraints and gives value 2 for the
objective function.

2 Thus, optimal value σ∗ is at least 4.

3 (2, 0) also feasible, and gives a better bound of 8.

4 How good is 8 when compared with σ∗?
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Obtaining Upper Bounds

1 Let us multiply the first constraint by 2 and the and add it to
second constraint

2( x1+ 3x2 ) ≤ 2(5)
+1( 2x1− 4x2 ) ≤ 1(10)

4x1+ 2x2 ≤ 20

2 Thus, 20 is an upper bound on the optimum value!
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Generalizing . . .

1 Multiply first equation by y1, second by y2, third by y3 and
fourth by y4 (both y1, y2, y3, y4 being positive) and add

y1( x1+ 3x2 ) ≤ y1(5)
+y2( 2x1− 4x2 ) ≤ y2(10)
+y3( x1+ x2 ) ≤ y3(7)
+y4( x1 ) ≤ y4(5)
(y1 + 2y2 + y3 + y4)x1 + (3y1 − 4y2 + y3)x2 ≤ . . .

2 5y1 + 10y2 + 7y3 + 5y4 is an upper bound, provided
coefficients of xi are same as in the objective function, i.e.,

y1 + 2y2 + y3 + y4 = 4 3y1 − 4y2 + y3 = 2

3 The best upper bound is when 5y1 + 10y2 + 7y3 + 5y4 is
minimized!
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Dual LP: Example

Thus, the optimum value of program

maximize 4x1 + 2x2

subject to x1 + 3x2 ≤ 5
2x1 − 4x2 ≤ 10

x1 + x2 ≤ 7
x1 ≤ 5

is upper bounded by the optimal value of the program

minimize 5y1 + 10y2 + 7y3 + 5y4

subject to y1 + 2y2 + y3 + y4 = 4
3y1 − 4y2 + y3 = 2

y1, y2 ≥ 0
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Dual Linear Program

Given a linear program Π in canonical form

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi i = 1, 2, . . . n

the dual Dual(Π) is given by

minimize
∑n

i=1 biyi

subject to
∑n

i=1 yiaij = cj j = 1, 2, . . . d
yi ≥ 0 i = 1, 2, . . . n

Proposition

Dual(Dual(Π)) is equivalent to Π
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Duality Theorem

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to
Dual(Π) then c · x ≤ y · b.

Theorem (Strong Duality)

If x∗ is an optimal solution to Π and y∗ is an optimal solution to
Dual(Π) then c · x∗ = y∗ · b.

Many applications! Maxflow-Mincut theorem can be deduced from
duality.
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