CS 473: Algorithms

Chandra Chekuri Ruta Mehta
University of Illinois, Urbana-Champaign

Fall 2016

CS 473: Algorithms, Fall 2016

Simplex and LP Duality

Lecture 19
October 28, 2016

Outline

Simplex: Intuition and Implementation Details

- Computing starting vertex: equivalent to solving an LP!

Infeasibility, Unboundedness, and Degeneracy.
Duality: Bounding the objective value through weak-duality
Strong Duality, Cone view.

Part I

Recall

Feasible Region and Convexity

Canonical Form

Given $\mathbf{A} \in \mathbf{R}^{\mathbf{n} \times \mathbf{d}}, \mathbf{b} \in \mathbf{R}^{\mathbf{n} \times \mathbf{1}}$ and $\mathbf{c} \in \mathbf{R}^{\mathbf{1} \times \mathbf{d}}$, find $\mathbf{x} \in \mathbf{R}^{\mathbf{d} \times \mathbf{1}}$

max: c•x
 s.t.
 $A x \leq b$

Linear Inequalities Define a Polyhedron
If $\sum_{\mathrm{j}} \mathbf{a}_{\mathrm{ij}} \mathbf{x}_{\mathbf{j}} \leq \mathbf{b}_{\mathbf{i}}$ hold we equality, we say the constraint/hyperplane \mathbf{i} is tight

$$
\begin{aligned}
& x_{1} \geqslant 0 \\
& x_{2} \geqslant 0 \\
& x_{1}+x_{2} \leqslant 1 \\
& x_{1}+x_{2}=1
\end{aligned}
$$

$x \leq 1$

Vertex Solution
Optimizing linear objective over a polyhedron \Rightarrow Vertex solution

$$
(c, x)=\sum_{i} \lambda_{i}\left(c, x_{i}\right)
$$

$$
\begin{gathered}
x=\lambda_{1} x_{1}+\lambda_{2} x_{2}+x_{3} x_{3} \\
+\lambda_{4} x_{4}+\lambda_{5} x_{5} \\
\forall \lambda_{i} \geqslant 0 \\
\sum_{i} \lambda_{i}=1 \\
a=\sum_{i} \lambda_{i} a_{i}
\end{gathered}
$$

$$
\begin{aligned}
& c, x)=\sum_{i} \lambda_{i}\left(c \cdot x_{i}\right) \max _{-i}^{\min a_{i} \leq a \leq \operatorname{rax}_{i} a_{i}} \\
& \left.(c \cdot x) \leq x_{i}\right) \frac{1}{\max _{i}}
\end{aligned}
$$

Vertex Solution

Optimizing linear objective over a polyhedron \Rightarrow Vertex solution

Basic Feasible Solution: feasible, and d linearly independent tight constraints.

Summary

(1) Each linear constraint defines a halfspace.
(2) Feasible region, which is an intersection of halfspaces, is a convex polyhedron.
(0) Optimal value attained at a vertex of the polyhedron.

Part II

Simplex

Simplex Algorithm

Simplex: Vertex hoping algorithm

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions

- Which neighbor to move to?
- When to stop?
- How much time does it take?

Observations

For Simplex

Suppose we are at a non-optimal vertex $\hat{\mathbf{x}}$ and optimal is \mathbf{x}^{*}, then $\mathbf{c} \cdot \mathbf{x}^{*}>\mathbf{c} \cdot \hat{\mathbf{x}}$.

Observations

For Simplex

Suppose we are at a non-optimal vertex $\hat{\mathbf{x}}$ and optimal is \mathbf{x}^{*}, then $\mathbf{c} \cdot \mathbf{x}^{*}>\mathbf{c} \cdot \hat{\mathbf{x}}$.

How does $(\mathbf{c} \cdot \mathbf{x})$ change as we move from $\hat{\mathbf{x}}$ to \mathbf{x}^{*} on the line joining the two?

Observations

For Simplex

Suppose we are at a non-optimal vertex $\hat{\mathbf{x}}$ and optimal is \mathbf{x}^{*}, then $\mathbf{c} \cdot \mathbf{x}^{*}>\mathbf{c} \cdot \hat{\mathbf{x}}$.

How does $(\mathbf{c} \cdot \mathbf{x})$ change as we move from $\hat{\mathbf{x}}$ to \mathbf{x}^{*} on the line joining the two?

Strictly increases!

Observations

For Simplex

Suppose we are at a non-optimal vertex $\hat{\mathbf{x}}$ and optimal is \mathbf{x}^{*}, then $\mathbf{c} \cdot \mathbf{x}^{*}>\mathbf{c} \cdot \hat{\mathbf{x}}$.

How does $(\mathbf{c} \cdot \mathbf{x})$ change as we move from $\hat{\mathbf{x}}$ to \mathbf{x}^{*} on the line joining the two?

Strictly increases!

- $\mathbf{d}=\mathbf{x}^{*}-\hat{\mathbf{x}}$ is the direction from $\hat{\mathbf{x}}$ to \mathbf{x}^{*}.
- $(\mathbf{c} \cdot \mathbf{d})=\left(\mathbf{c} \cdot \mathbf{x}^{*}\right)-(\mathbf{c} \cdot \hat{\mathrm{x}})>\mathbf{0}$.
- In $\mathbf{x}=\hat{\mathrm{x}}+\delta \mathbf{d}$, as δ goes from 0 to $\mathbf{1}$, we move from $\hat{\mathrm{x}}$ to \mathbf{x}^{*}.
- $\mathbf{c} \cdot \mathbf{x}=\mathbf{c} \cdot \hat{\mathbf{x}}+\boldsymbol{\delta}(\mathbf{c} \cdot \mathbf{d})$. Strictly increasing with δ !
- Due to convexity, all of these are feasible points.

Cone

Definition

Given a set of vectors $D=\left\{d_{1}, \ldots, d_{k}\right\}$, the cone spanned by them is just their positive linear combinations, i.e.,

$$
\operatorname{cone}(D)=\left\{d \mid d=\sum_{i=1}^{k} \lambda_{i} d_{i}, \text { where } \lambda_{i} \geq 0, \forall i\right\}
$$

Cone at a Vertex

Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{k}}$ be the neighboring vertices of $\hat{\mathbf{x}}$. And let $\mathbf{d}_{\mathbf{i}}=\mathbf{z}_{\mathbf{i}}-\hat{\mathbf{x}}$ be the direction from $\hat{\mathbf{x}}$ to $\mathbf{z}_{\mathbf{i}}$.

Lemma

Any feasible direction of movement \mathbf{d} from $\hat{\mathrm{x}}$ is in the cone($\left\{\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{k}}\right\}$).

Improving Direction Implies Improving Neighbor

Lemma

If $\mathbf{d} \in \operatorname{cone}\left(\left\{\mathbf{d}_{1}, \ldots, \mathbf{d}_{\mathrm{k}}\right\}\right)$ and $(\mathbf{c} \cdot \mathbf{d})>\mathbf{0}$, then there exists $\mathbf{d}_{\mathbf{i}}$ such that $\left(\mathbf{c} \cdot \mathbf{d}_{\mathbf{i}}\right)>\mathbf{0}$.

Improving Direction Implies Improving Neighbor

Lemma

If $\mathbf{d} \in \operatorname{cone}\left(\left\{\mathbf{d}_{1}, \ldots, \mathbf{d}_{\mathrm{k}}\right\}\right)$ and $(\mathbf{c} \cdot \mathbf{d})>\mathbf{0}$, then there exists $\mathbf{d}_{\mathbf{i}}$ such that $\left(\mathbf{c} \cdot \mathbf{d}_{\mathbf{i}}\right)>\mathbf{0}$.

Proof.

To the contrary suppose $\left(\mathbf{c} \cdot \mathbf{d}_{\mathbf{i}}\right) \leq \mathbf{0}, \forall \mathbf{i} \leq \mathbf{k}$. Since \mathbf{d} is a positive linear combination of $\mathbf{d}_{\mathbf{i}}$'s,

$$
\begin{aligned}
(\mathbf{c} \cdot \mathbf{d}) & =\left(\mathbf{c} \cdot \sum_{i=1}^{k} \lambda_{i} \mathbf{d}_{\mathbf{i}}\right) \\
& =\sum_{i=1}^{k} \lambda_{i}\left(\mathbf{c} \cdot \mathbf{d}_{\mathbf{i}}\right) \\
& \leq \mathbf{0} A \text { contradiction! }
\end{aligned}
$$

Improving Direction Implies Improving Neighbor

Lemma

If $\mathbf{d} \in \operatorname{cone}\left(\left\{\mathbf{d}_{1}, \ldots, \mathbf{d}_{\mathbf{k}}\right\}\right)$ and $(\mathbf{c} \cdot \mathbf{d})>\mathbf{0}$, then there exists $\mathbf{d}_{\mathbf{i}}$ such that $\left(\mathbf{c} \cdot \mathbf{d}_{\mathbf{i}}\right)>\mathbf{0}$.

Proof.

To the contrary suppose $\left(\mathbf{c} \cdot \mathbf{d}_{\mathbf{i}}\right) \leq \mathbf{0}, \forall \mathbf{i} \leq \mathbf{k}$. Since \mathbf{d} is a positive linear combination of $\mathbf{d}_{\mathbf{i}}$'s,

$$
\begin{aligned}
(\mathbf{c} \cdot \mathbf{d}) & =\left(\mathbf{c} \cdot \sum_{i=1}^{k} \lambda_{i} \mathbf{d}_{\mathbf{i}}\right) \\
& =\sum_{i=1}^{k} \lambda_{i}\left(\mathbf{c} \cdot \mathbf{d}_{\mathbf{i}}\right) \\
& \leq \mathbf{0} A \text { contradiction! }
\end{aligned}
$$

Theorem

If vertex $\hat{\mathbf{x}}$ is not optimal then it has a neighbor where cost improves.

How Many Neighbors a Vertex Has?

Geometric view...

$\mathbf{A} \in \mathbf{R}^{\mathbf{n} \times \mathbf{d}}(\mathbf{n}>\mathbf{d}), \mathbf{b} \in \mathbf{R}^{\mathbf{n}}$, the constraints are: $\mathbf{A x} \leq \mathbf{b}$

Faces

- Vertex: 0-dimensional face.

Edge: 1D face. . . . Hyperplane: (d-1)D face.

How Many Neighbors a Vertex Has?

Geometric view...

$\mathbf{A} \in \mathbf{R}^{\mathbf{n} \times \mathbf{d}}(\mathbf{n}>\mathbf{d}), \mathbf{b} \in \mathbf{R}^{\mathbf{n}}$, the constraints are: $\mathbf{A x} \leq \mathbf{b}$

Faces

- Vertex: 0-dimensional face. Edge: 1D face. . . . Hyperplane: $(\mathbf{d}-\mathbf{1}) \mathrm{D}$ face.
- r linearly independent tight hyperplanes forms $\mathbf{d}-\mathbf{r}$ dimensional face.

How Many Neighbors a Vertex Has?

Geometric view...

$\mathbf{A} \in \mathbf{R}^{\mathbf{n} \times \mathbf{d}}(\mathbf{n}>\mathbf{d}), \mathbf{b} \in \mathbf{R}^{\mathbf{n}}$, the constraints are: $\mathbf{A x} \leq \mathbf{b}$

Faces

- Vertex: 0-dimensional face. Edge: 1D face. . . . Hyperplane: $(\mathbf{d}-\mathbf{1}) \mathrm{D}$ face.
- \mathbf{r} linearly independent tight hyperplanes forms $\mathbf{d}-\mathbf{r}$ dimensional face.
- Vertices being of OD, d L.I. tight hyperplanes.

How Many Neighbors a Vertex Has?

Geometric view...

$\mathbf{A} \in \mathbf{R}^{\mathbf{n} \times \mathbf{d}}(\mathbf{n}>\mathbf{d}), \mathbf{b} \in \mathbf{R}^{\mathbf{n}}$, the constraints are: $\mathbf{A x} \leq \mathbf{b}$

Faces

- Vertex: 0-dimensional face. Edge: 1D face. . . . Hyperplane: $(\mathbf{d}-\mathbf{1}) \mathrm{D}$ face.
- \mathbf{r} linearly independent tight hyperplanes forms $\mathbf{d}-\mathbf{r}$ dimensional face.
- Vertices being of OD, d L.I. tight hyperplanes.

In 2-dimension ($\mathbf{d}=\mathbf{2}$)

How Many Neighbors a Vertex Has?

Geometric view...

$\mathbf{A} \in \mathbf{R}^{\mathbf{n} \times \mathbf{d}}(\mathbf{n}>\mathbf{d}), \mathbf{b} \in \mathbf{R}^{\mathbf{n}}$, the $\ln 3$-dimension $(\mathbf{d}=\mathbf{3})$ constraints are: $\mathbf{A x} \leq \mathbf{b}$

Faces

- Vertex: 0-dimensional face. Edge: 1D face. . . . Hyperplane: $(\mathbf{d}-\mathbf{1}) \mathrm{D}$ face.
- \mathbf{r} linearly independent tight constraints forms $\mathbf{d}-\mathbf{r}$ dimensional face.
- Vertices (Basic feasible solution) has d L.I. tight constraints.

How Many Neighbors a Vertex Has?

Geometry view...

One neighbor per tight hyperplane. Therefore typically d.

- Suppose \mathbf{x}^{\prime} is a neighbor of $\hat{\mathbf{x}}$, then on the edge joining the two $\mathbf{d}-1$ constraints are tight.
- These $\mathbf{d}-\mathbf{1}$ are also tight at both $\hat{\mathbf{x}}$ and \mathbf{x}^{\prime}.
- One more constraints, say \mathbf{i}, is tight at $\hat{\mathbf{x}}$. "Relaxing" \mathbf{i} at
 $\hat{\mathbf{x}}$ leads to \mathbf{x}^{\prime}.

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

- Which neighbor to move to? One where objective value increases.

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

- Which neighbor to move to? One where objective value increases.
- When to stop? When no neighbor with better objective value.

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

- Which neighbor to move to? One where objective value increases.
- When to stop? When no neighbor with better objective value.
- How much time does it take? At most d neighbors to consider in each step.

Simplex in Higher Dimensions

Simplex Algorithm

(1) Start at a vertex of the polytope.
(2) Compare value of objective function at each of the \mathbf{d} "neighbors".
(3) Move to neighbor that improves objective function, and repeat step 2.
(4) If no improving neighbor, then stop.

Simplex in Higher Dimensions

Simplex Algorithm

(1) Start at a vertex of the polytope.
(2) Compare value of objective function at each of the \mathbf{d} "neighbors".
(3) Move to neighbor that improves objective function, and repeat step 2.
(a) If no improving neighbor, then stop.

Simplex is a greedy local-improvement algorithm! Works because a local optimum is also a global optimum - convexity of polyhedra.

Part III

Implementation of the Pivoting Step (Moving to an improving neighbor)

Moving to a Neighbor

Fix a vertex $\hat{\mathbf{x}}$. Let the \mathbf{d} hyperplanes/constraints tight at $\hat{\mathbf{x}}$ be,

$$
\sum_{\mathrm{j}=1}^{\mathrm{d}} \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}=\mathrm{b}_{\mathrm{i}}, \quad \mathbf{1} \leq \mathrm{i} \leq \mathrm{d} \quad \text { Equivalently, } \hat{A} \mathrm{x}=\hat{\mathbf{b}}
$$

A neighbor vertex \mathbf{x}^{\prime} is connected to $\hat{\mathrm{x}}$ by an edge.
d $\mathbf{- 1}$ hyperplanes tight on this edge.

To reach \mathbf{x}^{\prime}, one hyperplane has to be relaxed, while maintaining other d - $\mathbf{1}$ tight.

Moving to a Neighbor (Contd.)

$$
-\hat{A}^{-1}=\left[\begin{array}{ccc}
\vdots & & \vdots \\
d_{1} & \ldots & d_{d} \\
\vdots & & \vdots
\end{array}\right]
$$

Lemma

Moving in direction $\mathbf{d}_{\mathbf{i}}$ from $\hat{\mathbf{x}}$, all except constraint \mathbf{i} remain tight.

Proof.

For a small $\boldsymbol{\epsilon}>\mathbf{0}$, let $\mathbf{y}=\hat{\mathbf{x}}+\boldsymbol{\epsilon}\left(\mathbf{d}_{\mathbf{i}}\right)$, then

$$
\hat{\mathbf{A}} y=\hat{\mathbf{A}}\left(\hat{\mathbf{x}}+\epsilon \mathbf{d}_{\mathrm{i}}\right)=\hat{\mathbf{A}} \hat{\mathbf{x}}+\epsilon \hat{\mathbf{A}}\left(-\hat{\mathbf{A}}^{-1}\right)_{(., \mathrm{i})}
$$

Moving to a Neighbor (Contd.)

$$
-\hat{A}^{-1}=\left[\begin{array}{ccc}
\vdots & & \vdots \\
\mathbf{d}_{1} & \cdots & \mathbf{d}_{\mathbf{d}} \\
\vdots & & \vdots
\end{array}\right]
$$

Lemma

Moving in direction $\mathbf{d}_{\mathbf{i}}$ from $\hat{\mathbf{x}}$, all except constraint \mathbf{i} remain tight.

Proof.

For a small $\boldsymbol{\epsilon}>\mathbf{0}$, let $\mathbf{y}=\hat{\mathbf{x}}+\boldsymbol{\epsilon}\left(\mathbf{d}_{\mathbf{i}}\right)$, then

$$
\begin{aligned}
\hat{A} y=\hat{A}\left(\hat{x}+\epsilon d_{i}\right) & =\hat{A} \hat{x}+\epsilon \hat{\mathbf{A}}\left(-\hat{\mathbf{A}}^{-1}\right)_{(, \mathrm{i})} \\
& =\hat{\mathbf{b}}+\epsilon[0, \ldots,-1, \ldots, 0]^{\top}
\end{aligned}
$$

Clearly, $\sum_{\mathrm{j}} \mathbf{a}_{\mathrm{kj}} \mathbf{y}_{\mathrm{j}}=\mathbf{b}_{\mathbf{k}}, \forall \mathbf{k} \neq \mathbf{i}$, and $\sum_{\mathrm{j}} \mathbf{a}_{\mathrm{ij}} \mathbf{y}_{\mathrm{j}}=\mathbf{b}_{\mathbf{i}}-\boldsymbol{\epsilon}<\mathbf{b}_{\mathbf{i}}$.

Computing the Neighbor

 hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1 through \mathbf{d} will be satisfied. For any $\mathbf{k}>\mathbf{d}$, where $\mathbf{A}_{\mathbf{k}}$ is $\mathbf{k}^{\text {th }}$ row of \mathbf{A},

$$
\begin{aligned}
\mathbf{A}_{k} \cdot\left(\hat{x}+\epsilon \mathbf{d}_{\mathrm{i}}\right) \leq \mathbf{b}_{k} & \Rightarrow\left(\mathbf{A}_{k} \cdot \hat{\mathbf{x}}\right)+\epsilon\left(\mathbf{A}_{k} \cdot \mathbf{d}_{\mathrm{i}}\right) \leq \mathbf{b}_{k} \\
& \Rightarrow \epsilon\left(\mathbf{A}_{k} \cdot \mathbf{d}_{\mathbf{i}}\right) \leq \mathbf{b}_{k}-\left(\mathbf{A}_{k} \cdot \hat{\mathbf{x}}\right)
\end{aligned}
$$

Computing the Neighbor

 hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1 through \mathbf{d} will be satisfied. For any $\mathbf{k}>\mathbf{d}$, where $\mathbf{A}_{\mathbf{k}}$ is $\mathbf{k}^{\text {th }}$ row of \mathbf{A},

$$
\begin{aligned}
\mathbf{A}_{k} \cdot\left(\hat{x}+\epsilon d_{i}\right) \leq \mathbf{b}_{k} & \Rightarrow\left(\mathbf{A}_{k} \cdot \hat{x}\right)+\epsilon\left(\mathbf{A}_{k} \cdot d_{i}\right) \leq \mathbf{b}_{k} \\
& \Rightarrow \epsilon\left(\mathbf{A}_{k} \cdot \mathbf{d}_{\mathbf{i}}\right) \leq \mathbf{b}_{k}-\left(\mathbf{A}_{k} \cdot \hat{x}\right) \\
\left(\text { If }\left(\mathbf{A}_{k} \cdot d_{i}\right)>\mathbf{0}\right) & \Rightarrow \epsilon \leq \frac{\mathbf{b}_{k}-\left(A_{k} \cdot \hat{\mathbf{x}}\right)}{A_{k} \cdot d_{i}}
\end{aligned}
$$

Computing the Neighbor

 hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1 through \mathbf{d} will be satisfied. For any $\mathbf{k}>\mathbf{d}$, where $\mathbf{A}_{\mathbf{k}}$ is $\mathbf{k}^{\text {th }}$ row of \mathbf{A},

$$
\begin{aligned}
\mathbf{A}_{k} \cdot\left(\hat{x}+\epsilon d_{i}\right) \leq \mathbf{b}_{k} & \Rightarrow\left(\mathbf{A}_{k} \cdot \hat{\mathbf{x}}\right)+\epsilon\left(\mathbf{A}_{k} \cdot \mathbf{d}_{\mathbf{i}}\right) \leq \mathbf{b}_{k} \\
& \Rightarrow \epsilon\left(\mathbf{A}_{k} \cdot \mathbf{d}_{\mathbf{i}}\right) \leq \mathbf{b}_{k}-\left(\mathbf{A}_{k} \cdot \hat{\mathbf{x}}\right) \\
\left(\text { If }\left(\mathbf{A}_{k} \cdot \mathbf{d}_{\mathbf{i}}\right)>\mathbf{0}\right) & \left.\Rightarrow \epsilon \leq \frac{\mathbf{b}_{k}-\left(\mathbf{A}_{k} \cdot \hat{\mathbf{x}}\right)}{\mathbf{A}_{k} \cdot d_{i}} \quad \text { (positive }\right)
\end{aligned}
$$

If moving towards hyperplane \mathbf{k}

Computing the Neighbor

 hyperplane!

Need to ensure feasibility. Above lemma implies inequalities 1 through \mathbf{d} will be satisfied. For any $\mathbf{k}>\mathbf{d}$, where $\mathbf{A}_{\mathbf{k}}$ is $\mathbf{k}^{\text {th }}$ row of \mathbf{A},

$$
\begin{aligned}
\mathbf{A}_{k} \cdot\left(\hat{x}+\epsilon d_{i}\right) \leq \mathbf{b}_{k} & \Rightarrow\left(\mathbf{A}_{k} \cdot \hat{x}\right)+\epsilon\left(\mathbf{A}_{k} \cdot d_{i}\right) \leq \mathbf{b}_{k} \\
& \Rightarrow \epsilon\left(\mathbf{A}_{k} \cdot \mathbf{d}_{\mathbf{i}}\right) \leq \mathbf{b}_{k}-\left(\mathbf{A}_{k} \cdot \hat{x}\right) \\
\left(\text { If }\left(\mathbf{A}_{k} \cdot d_{i}\right)>\mathbf{0}\right) & \left.\Rightarrow \epsilon \leq \frac{\mathbf{b}_{k}-\left(A_{k} \cdot \hat{\mathbf{x}}\right)}{A_{k^{\prime}} \cdot d_{i}} \quad \text { (positive }\right)
\end{aligned}
$$

If moving towards hyperplane \mathbf{k}

$$
\left(\text { If }\left(A_{k} \cdot d_{i}\right)<0\right) \quad \Rightarrow \epsilon \geq \frac{b_{k}-\left(A_{k} \cdot \hat{x}\right)}{A_{k} \cdot d_{i}} \quad \text { (negative) }
$$

If moving away from hyperplane \mathbf{k}.
No upper bound, and -ve lower bound!

Computing the Neighbor
Algorithm

$$
\begin{aligned}
& \text { NextVertex }\left(\hat{\mathbf{x}}, \mathbf{d}_{\mathbf{i}}\right) \\
& \text { Set } \epsilon \leftarrow \infty \text {. } \mu^{H} \\
& \text { For } k=d+1 \ldots n \not f k \text { set. } k^{H} \text { constraint is } \\
& \epsilon^{\prime} \leftarrow \frac{b_{k}-\left(A_{k} \cdot \hat{x}\right)}{\hat{A}_{\cdot} \cdot d_{i}} \quad \text { 'not' ighet at } \hat{x} \\
& \text { If } \epsilon^{\prime}>0 \text { and } \epsilon^{\prime}<\epsilon \text { then } \\
& \text { set } \epsilon \leftarrow \epsilon^{\prime} \\
& \text { If } \epsilon<\infty \text { then return } \hat{\mathbf{x}}+\boldsymbol{\epsilon \mathbf { d } _ { \mathbf { i } }} \text {. } \\
& \text { Else return null. }
\end{aligned}
$$

If $\left(\mathbf{c} \cdot \mathbf{d}_{\mathbf{i}}\right)>\mathbf{0}$ then the algorithm returns an improving neighbor.

$$
c \cdot\left(\hat{x}+G d_{i}\right)=(c \cdot \hat{y})+\epsilon\left(c \cdot d_{i}\right)>\left(c \cdot \hat{x^{\prime}}\right)
$$

Factory Example

$\max : \mathrm{x}_{1}+6 \mathrm{x}_{2}$
s.t. $\quad\left[\begin{array}{l}0 \leq \mathrm{x}_{1} \\ 0 \leq 200 \\ 0 \leq \mathrm{x}_{2}\end{array} \leq 300\right.$
$\mathrm{x}_{1}+\mathrm{x}_{2} \leq 400$

$$
\begin{aligned}
\hat{x}= & (0,0) \\
& -x_{1} \leq 0 \\
& -x_{2} \leq 0
\end{aligned}
$$

Factory Example

$$
\hat{\mathrm{x}}=(0,0)
$$

$\max : x_{1}+6 x_{2}$
$\begin{array}{ll}\text { s.t. } & 0 \leq \mathrm{x}_{1} \leq 200 \\ & 0 \leq \mathrm{x}_{2} \leq \mathbf{3 0 0} \\ & \mathrm{x}_{1}+\mathrm{x}_{2} \leq 400\end{array}$

$$
\begin{aligned}
& \hat{A}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \\
& -\hat{A}^{-1}=\left[\begin{array}{l}
1 \\
0 \\
d
\end{array}\right)\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{ll}
d_{1} & d_{2}
\end{array}\right] \\
& d_{l}
\end{aligned}
$$

Factory Example

$$
\hat{x}=(0,0)
$$

$\max : x_{1}+6 x_{2}$
$\begin{array}{ll}\text { s.t. } & 0 \leq \mathrm{x}_{1} \leq \mathbf{2 0 0} \\ & 0 \leq \mathrm{x}_{2} \leq \mathbf{3 0 0}\end{array}$ $\mathrm{x}_{1}+\mathrm{x}_{2} \leq 400$

$$
\begin{aligned}
& \hat{A}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \\
& -\hat{A}^{-1}=\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right]_{1}^{0}\left(\begin{array}{l}
0 \\
1
\end{array} d_{2}\right.
\end{aligned}=\left[\begin{array}{ll}
d_{1} & d_{2}
\end{array}\right]
$$

Moving in direction \mathbf{d}_{1} gives (200, 0)

Factory Example

$$
\hat{x}=(0,0)
$$

$$
\begin{aligned}
& \hat{A}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \\
& -\hat{A}^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
d_{1} & d_{2}
\end{array}\right]
\end{aligned}
$$

Moving in direction \mathbf{d}_{1} gives $(200,0)$

Moving in direction $\mathbf{d}_{\mathbf{2}}$ gives $(0,300)$.

Computing Starting Vertex

Equivalent to solving another LP!

Find an \mathbf{x} such that $\mathbf{A x} \leq \mathbf{b}$. If $\mathbf{b} \geq \mathbf{0}$ then trivial!

Computing Starting Vertex

Equivalent to solving another LP!

Find an \mathbf{x} such that $\mathbf{A x} \leq \mathbf{b}$. If $\mathbf{b} \geq \mathbf{0}$ then trivial! $\mathbf{x}=\mathbf{0}$. Otherwise.

Computing Starting Vertex

Equivalent to solving another LP!

Find an \mathbf{x} such that $\mathbf{A x} \leq \mathbf{b}$. If $\mathbf{b} \geq \mathbf{0}$ then trivial! $\mathbf{x}=\mathbf{0}$. Otherwise.

s.t.

$$
x=0 \Rightarrow-s \leq b i \quad \forall i
$$

$$
\Rightarrow S \geqslant-6 i
$$

$$
S=\xi_{i}-b i
$$

Computing Starting Vertex

Equivalent to solving another LP!

Find an \mathbf{x} such that $\mathbf{A x} \leq \mathbf{b}$. If $\mathbf{b} \geq \mathbf{0}$ then trivial! $\mathbf{x}=\mathbf{0}$. Otherwise.

$$
\begin{array}{ll}
\min : & \mathbf{s} \\
\text { s.t. } & \sum_{\mathrm{j}} \mathbf{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}-\mathbf{s} \leq \mathbf{b}_{\mathrm{i}}, \quad \forall \mathrm{i} \\
& \mathbf{s} \geq \mathbf{0}
\end{array}
$$

Trivial feasible solution: $\mathbf{x}=\mathbf{0}, \mathbf{s}=\left|\boldsymbol{\operatorname { m i n }}_{\mathbf{i}} \mathbf{b}_{\mathbf{i}}\right|$.

Computing Starting Vertex

Equivalent to solving another LP!

Find an \mathbf{x} such that $\mathbf{A x} \leq \mathbf{b}$. If $\mathbf{b} \geq \mathbf{0}$ then trivial! $\mathbf{x}=\mathbf{0}$. Otherwise.

$$
\begin{array}{ll}
\min : & \mathbf{s} \\
\text { s.t. } & \sum_{\mathrm{j}} \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}-\mathbf{s} \leq \mathbf{b}_{\mathrm{i}}, \quad \forall \mathrm{i} \\
& \mathbf{s} \geq \mathbf{0}
\end{array}
$$

Trivial feasible solution: $\mathbf{x}=\mathbf{0}, \mathbf{s}=\left|\min _{\mathbf{i}} \mathbf{b}_{\mathbf{i}}\right|$.

If $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ feasible then optimal value of the above LP is $\mathbf{s}=\mathbf{0}$.

Solving Linear Programming in Practice

(1) Naïve implementation of Simplex algorithm can be very inefficient

Solving Linear Programming in Practice

(1) Naïve implementation of Simplex algorithm can be very inefficient - Exponential number of steps!

Solving Linear Programming in Practice

(1) Naïve implementation of Simplex algorithm can be very inefficient
(1) Choosing which neighbor to move to can significantly affect running time
(2) Very efficient Simplex-based algorithms exist
(3) Simplex algorithm takes exponential time in the worst case but works extremely well in practice with many improvements over the years
(2) Non Simplex based methods like interior point methods work well for large problems.

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time algorithm for linear programming?

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time algorithm for linear programming?
Leonid Khachiyan in 1979 gave the first polynomial time algorithm using the Ellipsoid method.
(1) major theoretical advance
(2) highly impractical algorithm, not used at all in practice
(0) routinely used in theoretical proofs.

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time algorithm for linear programming?
Leonid Khachiyan in 1979 gave the first polynomial time algorithm using the Ellipsoid method.
(3) major theoretical advance
(2) highly impractical algorithm, not used at all in practice
(0) routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time algorithm, the interior point method.
(1) very practical for some large problems and beats simplex
(2) also revolutionized theory of interior point methods

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time algorithm for linear programming?
Leonid Khachiyan in 1979 gave the first polynomial time algorithm using the Ellipsoid method.
(1) major theoretical advance
(2) highly impractical algorithm, not used at all in practice
(3) routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time algorithm, the interior point method.
(1) very practical for some large problems and beats simplex
(2) also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved enormously and is the method of choice.

Degeneracy

(1) The linear program could be infeasible: No points satisfy the constraints.
(2) The linear program could be unbounded: Polygon unbounded in the direction of the objective function.
(3) More than \mathbf{d} hyperplanes could be tight at a vertex, forming more than \mathbf{d} neighbors.

Infeasibility: Example

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{x}_{1}+6 \mathrm{x}_{2} \\
\text { subject to } & \mathbf{x}_{1} \leq 2 \\
& \mathbf{x}_{2} \leq \mathbf{1} \quad \mathbf{x}_{1}+\mathrm{x}_{2} \geq 4 \\
\mathbf{x}_{1}, \mathbf{x}_{2} \geq 0
\end{array}
$$

Infeasibility has to do only with constraints.

Infeasibility: Example

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{x}_{1}+6 x_{2} \\
\text { subject to } & \mathbf{x}_{1} \leq 2 \\
& \mathbf{x}_{2} \leq 1 \quad \mathrm{x}_{1}+\mathrm{x}_{2} \geq 4 \\
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{array}
$$

Infeasibility has to do only with constraints.

No starting vertex for Simplex. How to detect this?

Infeasibility: Example

$$
\begin{aligned}
& \operatorname{maximize} \\
& \text { subject to }
\end{aligned} \quad \begin{gathered}
\mathbf{x}_{1} \leq \mathbf{x}+6 x_{2} \\
\mathbf{x}_{2} \leq \mathbf{1} \quad \mathbf{x}_{1}+\mathrm{x}_{2} \geq \mathbf{4} \\
\mathbf{x}_{1}, \mathbf{x}_{2} \geq 0
\end{gathered}
$$

Infeasibility has to do only with constraints.

No starting vertex for Simplex. How to detect this?

min: s

LP s.t. $\quad \sum_{\mathrm{j}} \mathbf{a}_{\mathrm{ij}} \mathbf{x}_{\mathbf{j}}-\mathbf{s} \leq \mathbf{b}_{\mathbf{i}}, \quad \forall \mathbf{i} \quad$ to find a feasible point will $\mathrm{s} \geq 0$
have positive optimal.

Unboundedness: Example

$$
\begin{array}{r}
\operatorname{maximize} \mathrm{x}_{2} \\
\mathrm{x}_{1}+\mathrm{x}_{2} \geq 2 \\
\mathbf{x}_{1}, \mathrm{x}_{2} \geq 0
\end{array}
$$

Unboundedness depends on both constraints and the objective function.

Unboundedness: Example

$$
\begin{array}{r}
\operatorname{maximize} \mathrm{x}_{2} \\
\mathrm{x}_{1}+\mathrm{x}_{2} \geq 2 \\
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{array}
$$

Unboundedness depends on both constraints and the objective function.

If unbounded in the direction of objective function, then NextVertex will eventually return null

Degeneracy and Cycling

More than \mathbf{d} constraints are tight at vertex $\hat{\mathbf{x}}$. Say $\mathbf{d}+\mathbf{1}$.
Suppose, we pick first \mathbf{d} to form $\hat{\mathbf{A}}$, and compute directions d_{1}, \ldots, d_{d}.

Degeneracy and Cycling

More than \mathbf{d} constraints are tight at vertex $\hat{\mathbf{x}}$. Say $\mathbf{d}+\mathbf{1}$.
Suppose, we pick first d to form Â, and compute directions d_{1}, \ldots, d_{d}.
 $\epsilon=\mathbf{0}$ as an upper bound. Hence it will return $\hat{\mathbf{x}}$ again.

Degeneracy and Cycling

More than \mathbf{d} constraints are tight at vertex $\hat{\mathbf{x}}$. Say $\mathbf{d}+\mathbf{1}$.
Suppose, we pick first \mathbf{d} to form $\hat{\mathbf{A}}$, and compute directions d_{1}, \ldots, d_{d}.
 $\epsilon=\mathbf{0}$ as an upper bound. Hence it will return $\hat{\mathbf{x}}$ again.

Same phenomenon will repeat!

Degeneracy and Cycling

More than \mathbf{d} constraints are tight at vertex $\hat{\mathbf{x}}$. Say $\mathbf{d}+\mathbf{1}$.
Suppose, we pick first \mathbf{d} to form $\hat{\mathbf{A}}$, and compute directions d_{1}, \ldots, d_{d}.

Then $\operatorname{NextVertex(~} \hat{\mathbf{x}}, \mathbf{d}_{\mathbf{i}}$) will encounter $(\mathbf{d}+\mathbf{1})^{\text {th }}$ constraint with $\epsilon=\mathbf{0}$ as an upper bound. Hence it will return $\hat{\mathbf{x}}$ again.

Same phenomenon will repeat!
This can be avoided by adding small random perturbation to $\mathbf{b}_{\mathbf{i}} \mathbf{s}$.

Feasible Solutions and Lower Bounds

Consider the program

$$
\begin{array}{lrll}
\operatorname{maximize} & \mathbf{4} \mathbf{x}_{1}+ & 2 \mathbf{x}_{2} & \\
\text { subject to } & \mathbf{x}_{1}+ & 3 \mathbf{x}_{2} & \leq 5 \\
& 2 \mathbf{x}_{1}- & \mathbf{4} \mathbf{x}_{2} & \leq 10 \\
& \mathbf{x}_{1}+ & \mathbf{x}_{2} & \leq \mathbf{7} \\
& \mathbf{x}_{1} & & \leq 5
\end{array}
$$

Feasible Solutions and Lower Bounds

Consider the program

$$
\begin{array}{lrll}
\operatorname{maximize} & \mathbf{4} \mathbf{x}_{1}+ & 2 \mathbf{x}_{2} & \\
\text { subject to } & \mathbf{x}_{1}+ & 3 \mathbf{x}_{2} & \leq \mathbf{5} \\
& 2 \mathbf{x}_{1}- & \mathbf{4} \mathbf{x}_{2} & \leq \mathbf{1 0} \\
& \mathbf{x}_{1}+ & \mathbf{x}_{2} & \leq \mathbf{7} \\
& \mathbf{x}_{1} & & \leq 5
\end{array}
$$

(1) $(0,1)$ satisfies all the constraints and gives value 2 for the objective function.

Feasible Solutions and Lower Bounds

Consider the program

$$
\begin{array}{lrll}
\operatorname{maximize} & \mathbf{4} \mathbf{x}_{1}+ & 2 \mathbf{x}_{2} & \\
\text { subject to } & \mathrm{x}_{1}+ & 3 \mathrm{x}_{2} & \leq 5 \\
& 2 \mathrm{x}_{1}- & \mathbf{4} \mathrm{x}_{2} & \leq 10 \\
& \mathbf{x}_{1}+ & \mathbf{x}_{2} & \leq \mathbf{7} \\
& \mathbf{x}_{1} & & \leq 5
\end{array}
$$

(1) $(0,1)$ satisfies all the constraints and gives value 2 for the objective function.
(2) Thus, optimal value σ^{*} is at least 4 .

Feasible Solutions and Lower Bounds

Consider the program

$$
\begin{array}{lrll}
\operatorname{maximize} & 4 x_{1}+ & 2 x_{2} & \\
\text { subject to } & x_{1}+ & 3 x_{2} & \leq 5 \\
& 2 x_{1}- & 4 x_{2} & \leq 10 \\
& x_{1}+ & x_{2} & \leq 7 \\
& \mathrm{x}_{1} & & \leq 5
\end{array}
$$

(1) $(0,1)$ satisfies all the constraints and gives value 2 for the objective function.
(2) Thus, optimal value σ^{*} is at least 4 .
(3) $(2,0)$ also feasible, and gives a better bound of 8 .

Feasible Solutions and Lower Bounds

Consider the program

$$
\begin{array}{lrll}
\operatorname{maximize} & 4 \mathrm{x}_{1}+ & 2 \mathrm{x}_{2} & \\
\text { subject to } & \mathrm{x}_{1}+ & 3 \mathrm{x}_{2} & \leq 5 \\
& 2 \mathrm{x}_{1}- & \mathbf{4 x _ { 2 }} & \leq 10 \\
& \mathrm{x}_{1}+ & \mathrm{x}_{2} & \leq 7 \\
& \mathrm{x}_{1} & & \leq 5
\end{array}
$$

(1) $(0,1)$ satisfies all the constraints and gives value 2 for the objective function.
(2) Thus, optimal value σ^{*} is at least 4.
(3) $(2,0)$ also feasible, and gives a better bound of 8 .
(4) How good is 8 when compared with σ^{*} ?

Obtaining Upper Bounds

(1) Let us multiply the first constraint by 2 and the and add it to second constraint

$$
\begin{aligned}
& 2\left(\begin{array}{rl}
x_{1}+ & 3 x_{2}
\end{array}\right) \leq 2(5) \\
&+1\left(2 x_{1}-4 x_{2}\right.) \leq 1(10) \\
& \hline 4 x_{1}+2 x_{2} \leq 20
\end{aligned}
$$

(2) Thus, 20 is an upper bound on the optimum value!

Generalizing . . .

(1) Multiply first equation by \mathbf{y}_{1}, second by \mathbf{y}_{2}, third by \mathbf{y}_{3} and fourth by \mathbf{y}_{4} (both $\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}$ being positive) and add

$$
\begin{array}{rcrl}
y_{1}(& x_{1}+ & 3 x_{2} &) \leq y_{1}(5) \\
+y_{2}(& 2 x_{1}- & 4 x_{2} &) \leq y_{2}(10) \\
+y_{3}(& x_{1}+ & x_{2} &) \leq y_{3}(7) \\
+y_{4}(& x_{1} & &) \leq y_{4}(5) \\
\hline\left(y_{1}+2 y_{2}+y_{3}+y_{4}\right) x_{1}+\left(3 y_{1}-4 y_{2}+\right. & \left.y_{3}\right) x_{2} \leq \ldots
\end{array}
$$

(2) $5 y_{1}+10 y_{2}+7 y_{3}+5 y_{4}$ is an upper bound, provided coefficients of x_{i} are same as in the objective function, i.e.,

$$
y_{1}+2 y_{2}+y_{3}+y_{4}=4 \quad 3 y_{1}-4 y_{2}+y_{3}=2
$$

(3) The best upper bound is when $5 y_{1}+10 y_{2}+7 y_{3}+5 y_{4}$ is minimized!

Dual LP: Example

Thus, the optimum value of program

$$
\begin{array}{lr}
\text { maximize } & 4 x_{1}+2 x_{2} \\
\text { subject to } & x_{1}+3 x_{2} \leq 5 \\
2 \mathrm{x}_{1}-4 \mathrm{x}_{2} \leq 10 \\
& \mathrm{x}_{1}+\mathrm{x}_{2} \leq 7 \\
& \mathrm{x}_{1} \leq 5
\end{array}
$$

is upper bounded by the optimal value of the program

$$
\begin{array}{lr}
\operatorname{minimize} & 5 y_{1}+10 y_{2}+7 y_{3}+5 y_{4} \\
\text { subject to } & y_{1}+2 y_{2}+y_{3}+y_{4}=4 \\
3 y_{1}-4 y_{2}+y_{3}=2 \\
y_{1}, y_{2} \geq 0
\end{array}
$$

Dual Linear Program

Given a linear program $\boldsymbol{\Pi}$ in canonical form

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \quad i=1,2, \ldots n
\end{array}
$$

the dual $\operatorname{Dual}(\Pi)$ is given by

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{i=1}^{n} b_{i} y_{i} \\
\text { subject to } & \sum_{i=1}^{n} y_{i} a_{i j}=c_{j} \quad \begin{array}{l}
j=2, \ldots d \\
y_{i} \geq 0
\end{array} \quad i=1,2, \ldots n
\end{array}
$$

Dual Linear Program

Given a linear program $\boldsymbol{\Pi}$ in canonical form

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \quad i=1,2, \ldots n
\end{array}
$$

the dual $\operatorname{Dual}(\Pi)$ is given by

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{i=1}^{n} b_{i} y_{i} \\
\text { subject to } & \sum_{i=1}^{n} y_{i} a_{i j}=c_{j} \quad \begin{array}{l}
j=2, \ldots d \\
y_{i} \geq 0
\end{array} \quad i=1,2, \ldots n
\end{array}
$$

Proposition

Dual(Dual(П)) is equivalent to $\boldsymbol{\Pi}$

Duality Theorem

Theorem (Weak Duality)

If \mathbf{x} is a feasible solution to Π and \mathbf{y} is a feasible solution to $\operatorname{Dual}(\boldsymbol{\Pi})$ then $\mathbf{c} \cdot \mathbf{x} \leq \mathbf{y} \cdot \mathbf{b}$.

Duality Theorem

Theorem (Weak Duality)

If \mathbf{x} is a feasible solution to $\boldsymbol{\Pi}$ and \mathbf{y} is a feasible solution to Dual($\boldsymbol{\Pi})$ then $\mathbf{c} \cdot \mathbf{x} \leq \mathbf{y} \cdot \mathbf{b}$.

Theorem (Strong Duality)
 If \mathbf{x}^{*} is an optimal solution to $\boldsymbol{\Pi}$ and \mathbf{y}^{*} is an optimal solution to Dual($\boldsymbol{\Pi})$ then $\mathbf{c} \cdot \mathbf{x}^{*}=\mathbf{y}^{*} \cdot \mathbf{b}$.

Many applications! Maxflow-Mincut theorem can be deduced from duality.

