CS 473: Algorithms

Chandra Chekuri Ruta Mehta

University of lllinois, Urbana-Champaign

Fall 2016

Chandra & Ruta (UIUC) CS473 1 Fall 2016 1/43

CS 473: Algorithms, Fall 2016

Introduction to Linear
Programming

Lecture 18
October 26, 2016

Chandra & Ruta (UIUC) Fall 2016 2 /43

Part |

Introduction to Linear Programming

Chandra & Ruta (UIUC) Fall 2016 3/43

A Factory Example

Suppose a factory produces two products 1 and 2 using resources
A,B,C.
© Making a unit of 1 requires a unit each of A and C.
@ A unit of 2 requires one unit of B and C.
© We have 200 units of A, 300 units of B, and 400 units of C.
@ Product 1 can be sold for $1 and product 2 for $6.

How many units of product 1 and product 2 should the factory
manufacture to maximize profit?

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 /43

A Factory Example

Suppose a factory produces two products 1 and 2 using resources
A,B,C.
© Making a unit of 1 requires a unit each of A and C.
@ A unit of 2 requires one unit of B and C.
© We have 200 units of A, 300 units of B, and 400 units of C.
@ Product 1 can be sold for $1 and product 2 for $6.

How many units of product 1 and product 2 should the factory
manufacture to maximize profit?

Solution:

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 /43

A Factory Example

Suppose a factory produces two products 1 and 2 using resources
A,B,C.
© Making a unit of 1 requires a unit each of A and C.
@ A unit of 2 requires one unit of B and C.
© We have 200 units of A, 300 units of B, and 400 units of C.
@ Product 1 can be sold for $1 and product 2 for $6.

How many units of product 1 and product 2 should the factory
manufacture to maximize profit?

Solution: Formulate as a linear program.

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 /43

A Factory Example

Suppose a factory produces two
products 1 and 2, using resources
A,B,C.

Making a unit of 1: Req. one
unit of A, C.

o

@ Making unit of 2: Req. one
unit of B, C.

o

Have A: 200, B: 300, and
C: 400.

@ Price of 1: $1, and 2: $6.

How many units of 1 and 2 to
manufacture to max profit?

Chandra & Ruta (UIUC) CS473 5 Fall 2016 5/43

A Factory Example

Problem

Suppose a factory produces two
products 1 and 2, using resources
A,B,C.
@ Making a unit of 1: Req. one
unit of A, C.
@ Making unit of 2: Req. one
unit of B, C.
© Have A: 200, B: 300, and
C: 400.
@ Price of 1: $1, and 2: $6.
How many units of 1 and 2 to
manufacture to max profit?

Chandra & Ruta (UIUC) CS473

max
s.t.

x1 + 6x2
x1 < 200 (A)
x> < 300 (B)

X1+XQS400 (C)
X1 Z 0
X2 2 0

Fall 2016 5/43

Linear Programming Formulation

Let us produce x; units of product 1 and x; units of product 2. Our
profit can be computed by solving

maximize X1 + 6x,
subject to x3 <200 x; <300 x; 4+ x2 < 400
X1, X2 Z 0

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 /43

Linear Programming Formulation

Let us produce x; units of product 1 and x; units of product 2. Our
profit can be computed by solving

maximize
subject to x; < 200

What is the solution?
max ZCJ' a
£z Ag =042
>,|'f\ A| 70 A4z =1 by ~3®

0 L, 6], [‘Js_£ E,]Ealfggﬂq“;' by = 40

% -\l/ 'p“

Chandra & Ruta (UIUC)

Maximum Flow in Network

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 /43

Maximum Flow in Network

9 Need to compute values

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 /43

Maximum Flow in Network

9 Need to compute values

fs1 S 15 f, S 5 fs3 S 10
f14 <30 1 <4 f5<8
f322<4 f35 <15 f36 <9
fao <6 fge <10 f5q <15
fse <10 fo5 < 15 fg < 10

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 /43

Maximum Flow in Network

9 Need to

fsl S 15
f14 <30
f32<4
faa <6
fse < 10

and

fs1 + o1 = fua fso + f3o = fo1 4 fo5

f1a + fsa = f40 + fae

Chandra & Ruta (UIUC) CS473 7

fos + f35 + fo5 = f54 + f5;

compute values

... f5, fgr such that

fs2 S 5
f1 <4
f35 < 15
fae < 10
fos < 15

fs3 <10
fs < 8
f36 <9
fsa < 15
for < 10

fs3 = f32 + f35 + f36
f36 = fo5 + for

Fall 2016 7 /43

Maximum Flow in Network

9 Need to

fsl S 15
f14 <30
f32<4
faa <6
fse < 10

and

fs1 + for = fua
f1a + fsa = f40 + fae

fleO f5220 f5320

Chandra & Ruta (UIUC) CS473 7

fso + f3o = fo1 4 fo5
fos + f35 + fo5 = f54 + f5;
far >0

compute values

... f5, fgr such that

fs2 S 5
f1 <4
f35 < 15
fae < 10
fos < 15

fs3 <10
fs < 8
f36 <9
fsa < 15
for < 10

fs3 = f32 + f35 + f36
f36 = fo5 + for
fss >0 f6e >0

Fall 2016 7 /43

Maximum Flow in Network

9 Need to compute values
fs1, fs2, . . . fo5, . . . 5, fgr such that

fs1 S 15 f, S 5 fs3 S 10
f14 <30 1 <4 f5<8
f322<4 f35 <15 f36 <9
fao <6 fge <10 f5q <15
fse <10 fo5 < 15 fg < 10

and
fs1 + o1 = fua fso + f3o = fo1 4 fo5 fs3 = f32 + f35 + f36
fla + fsa = fao + far fo5 + f35 + fo5 = f5a + f5r f36 = fo5 + for
fi>0 f2>0 f3>0 --- >0 f5e>0 fee>0

and fg + fo + fg3 is maximized.

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 /43

Maximum Flow as a Linear Program

For a general flow network G = (V, E) with capacities c. on edge
e € E, we have variables f, indicating flow on edge e

Maximize Z fo

eoutof s
subject to f. < c. foreache € E
Y fe— > fo=0 WeV\{st}
e out of v e into v
fe >0 for each e € E.

Chandra & Ruta (UIUC) CS473 8 Fall 2016 8 /43

Maximum Flow as a Linear Program

For a general flow network G = (V, E) with capacities c. on edge
e € E, we have variables f, indicating flow on edge e

Maximize Z fo

eoutof s
subject to f. < c. foreache € E
Y fe— > fo=0 WeV\{st}
e out of v e into v
fe >0 for each e € E.

Number of variables: m, one for each edge.
Number of constraints: m+n — 2 4+ m.

Chandra & Ruta (UIUC) CS473 8 Fall 2016 8 /43

Minimum Cost Flow with Lower Bounds

.. as a Linear Program

For a general flow network G = (V, E) with capacities c., lower
bounds £, and costs we, we have variables f, indicating flow on edge
e. Suppose we want a min-cost flow of value at least v.

subject to Z fo>v

eoutof s

fo <ce fo > Lo foreache € E
Z fo — Z fe=0 foreachv eV — {s,t}

e out of v e into v

fe>0 for each e € E.

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /43

Minimum Cost Flow with Lower Bounds

.. as a Linear Program

For a general flow network G = (V, E) with capacities c., lower
bounds £, and costs we, we have variables f, indicating flow on edge
e. Suppose we want a min-cost flow of value at least v.

subject to Z fo>v

eoutof s

fo <ce fo > Lo foreache € E
Z fo — Z fe=0 foreachv eV — {s,t}

e out of v e into v

fe>0 for each e € E.

Number of variables: m, one for each edge
Number of constraints: 1+ m+m+n—2+m=3m+n—1.

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 /43

Linear Programs

Find a vector x € RY that

maximize /minimize ijjzl GjX;

subject to Z}j:l ajx; < b fori=1...p
Z}Llaijxj =b; fori=p+1...q
Zf':laijxj >b; fori=q+1...n

Chandra & Ruta (UIUC) CS473 10 Fall 2016 10 / 43

Linear Programs

Find a vector x € RY that

maximize /minimize ijjzl GjX;

subject to Z}j:l ajx; < b fori=1...p
Z}Llaijxj =b; fori=p+1...q
Zf':laijxj >b; fori=q+1...n

Input is matrix A = (a;) € R"™4, column vector b = (b;) € R",
and row vector ¢ = (g;) € R

Chandra & Ruta (UIUC) CS473 10 Fall 2016 10 / 43

Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

maximize Z}j:l CiXj
subject to Z;Ll aijx; < by fori=1...n

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 43

Canonical Form of Linear Programs

rea X X,

A linear program is in canonical form if it has the following/structure
<
. . d (j Z X —)
maximize > ., € T — [=
subject to Z}Ll aijx; < by fori=1i+".n

xigf_

Conversion to Canonical Form

(1] Replace Zj djjX; = bi by Zj adjjXj S bi and — Zj adjjX;j S —bi
Q Replace Zj adjjXj 2 bi by — Zj adjjXj S —bi

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 43

Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize C-X
subjectto Ax < b

where A = (a;;) € R"¥9, column vector b = (b;) € R", row vector
c = (¢) € RY, and column vector x = (x;) € R

@ Number of variable is d

. . X=A%) 1
@ Number of constraints is n X) X (M)%s
0zXx<l

X & b, 7

AX = AC)&Xf-f (-9 %) }((A l } 6"1!0;1

Z
= A (A%)+ (PA)(AYL) (-2(A xg £6)
ZAb +U-NDD = E(xF) - =}

Chandra & Ruta (UIUC) CS473 12 Fall 2016 12 / 43

Other Standard Forms for Linear Programs

maximize €+ X minimize c-X
subjectto Ax < b subjectto Ax > b
x>0 x>0

minimize € - X
subjectto Ax=b
x>0

Chandra & Ruta (UIUC) CS473 13 Fall 2016 13 / 43

Linear Programming: A History

@ First formal application to problems in economics by Leonid
Kantorovich in the 1930s
@ However, work was ignored behind the Iron Curtain and
unknown in the West
© Rediscovered by Tjalling Koopmans in the 1940s, along with
applications to economics

@ First algorithm (Simplex) to solve linear programs by George
Dantzig in 1947
@ Kantorovich and Koopmans receive Nobel Prize for economics in
1975 ; Dantzig, however, was ignored
@ Koopmans contemplated refusing the Nobel Prize to protest
Dantzig's exclusion, but Kantorovich saw it as a vindication for
using mathematics in economics, which had been written off as
“a means for apologists of capitalism”

Chandra & Ruta (UIUC) CS473 14 Fall 2016 14 / 43

Back to the Factory example

Produce x; units of product 1 and x» units of product 2. Our profit
can be computed by solving

maximize X1 + 6x,
subject to x;3 <200 x; <300 x; 4+ x; < 400
X1, X2 Z 0

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 43

Back to the Factory example

Produce x; units of product 1 and x» units of product 2. Our profit
can be computed by solving

maximize X1 + 6x»
subject to x3 <200 x; <300 x; + x, < 400
X1, X2 Z 0

What is the solution?

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 43

Solving the Factory Example

@ Feasible values of x; and x, are shaded
region.

maximize X1 + 6x2
subject to x31 <200 x2 <300 x3 4+ x2 <400
x1,x2 > 0

Chandra & Ruta (UIUC) CS473 16 Fall 2016 16 / 43

Solving the Factory Example

X2 |
J 3 @ Feasible values of x; and x, are shaded
g (1235 . region.

@ Objective (Cost) function is a direction —
the line represents all points with same
value of the function

c= Vol léL

T~) DNV

maximize x1 + 6x2
subject to x31 <200 x2 <300 x3 4+ x2 <400
X1, X2 2> 0 1?)z 0
4
1y £T £ <%

Chandra & Ruta (UIUC) CS473 16 Fall 2016 16 / 43

Solving the Factory Example

@ Feasible values of x; and x; are shaded
3-=--2------- region.

ffIG? Objective (Cost) function is a direction —
the line represents all points with same
value of the function; moving the line until
™ _® it just leaves the feasible region, gives
optimal values.

X, +€g >10D

maximize X1 + 6x2)(‘ .’.(XL: 4®
subject to x1 <200 x2 <300 x;+ x2 < 400 -
x1,x2 > 0 = ’9%4

Chandra & Ruta (UIUC) CS473 16 Fall 2016 16 / 43

Linear Programming in 2-d

@ Each constraint a half plane
@ Feasible region is intersection of finitely many half planes — it
forms a polygon

© For a fixed value of objective function, we get a line. Parallel
lines correspond to different values for objective function.

@ Optimum achieved when objective function line just leaves the
feasible region

Chandra & Ruta (UIUC) CS473 17 Fall 2016 17 / 43

An Example in 3-d

max x1 + 6xo + 1323
z1 < 200
z9 < 300
x4+ xo + x3 < 400
9 + 33 < 600
1 >0
x9 >0
z3 >0

CNONCNCHCNCNC)

Figure from Dasgupta etal book.

Chandra & Ruta (UIUC) CS473 18 Fall 2016 18 / 43

Factory Example: Alternate View

Original Problem

Recall we have,

maximize X1 + 6%,
subject to x3 < 200 x, <300 x; + x, < 400
X14 X2 Z 0

Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 43

Factory Example: Alternate View

Original Problem

Recall we have,

maximize X1 + 6x,
subject to x3 <200 x; < 300 x; + x2 < 400
X1, X2 Z 0

Transformation

Consider new variable z; and z,, such that z; = x; + 6x, and
Z, = X3. Then x; = z; — 62,. In terms of the new variables we have

maximize zZ;
subject to z; — 6z, < 200 z, <300 z; — 5z, <400
23-62,>20 2>0

Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 43

Transformed Picture

Zy

A

Feasible region rotated, and optimal value at the right-most point on

polygon

Chandra & Ruta (UIUC)

CS473

20

Fall 2016 20 / 43

Observations about the Transformation

© Linear program can always be transformed to get a linear
program where the optimal value is achieved at the point in the
feasible region with highest x-coordinate

@ Optimum value attained at a vertex of the polygon

© Since feasible region is convex, and objective function linear,
every local optimum is a global optimum

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 /43

A Simple Algorithm in 2-d

@ optimum solution is at a vertex of the feasible region

@ a vertex is defined by the intersection of two lines (constraints)

Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 /43

A Simple Algorithm in 2-d

@ optimum solution is at a vertex of the feasible region

@ a vertex is defined by the intersection of two lines (constraints)

Algorithm:
@ find all intersections between the n lines — n? points

@ for each intersection point p = (p1, p2)

@ check if p is in feasible region (how?)
@ if p is feasible evaluate objective function at p:

val(p) = c1p1 + c2p2
© Output the feasible point with the largest value

Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 /43

A Simple Algorithm in 2-d

@ optimum solution is at a vertex of the feasible region

@ a vertex is defined by the intersection of two lines (constraints)

Algorithm:
@ find all intersections between the n lines — n? points

@ for each intersection point p = (p1, p2)

@ check if p is in feasible region (how?)
@ if p is feasible evaluate objective function at p:

val(p) = c1p1 + c2p2
© Output the feasible point with the largest value
Running time: O(n?).

Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 /43

Simple Algorithm in Dimensions

Real problem: d-dimensions

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 /43

Simple Algorithm in Dimensions

Real problem: d-dimensions
@ optimum solution is at a vertex of the feasible region
@ a vertex is defined by the intersection of d hyperplanes
© number of vertices can be 2(n?)

Running time: O(n*!) which is not polynomial since problem size is
at least nd. Also not practical.

How do we find the intersection point of d hyperplanes in RY?

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 /43

Simple Algorithm in Dimensions

Real problem: d-dimensions
@ optimum solution is at a vertex of the feasible region
@ a vertex is defined by the intersection of d hyperplanes
© number of vertices can be 2(n?)

Running time: O(n*!) which is not polynomial since problem size is
at least nd. Also not practical.

How do we find the intersection point of d hyperplanes in R4? Using
Gaussian elimination to solve Ax = b where A is a d X d matrix and
bisad x 1 matrix.

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 /43

Linear Programming in d-dimensions

@ Each linear constraint defines a halfspace.

@ Feasible region, which is an intersection of halfspaces, is a
convex polyhedron.

© Every local optimum is a global optimum.
@ Optimal value attained at a vertex of the polyhedron.

Chandra & Ruta (UIUC) CS473 24 Fall 2016 24 / 43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 /43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 /43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

@ Which neighbor to move to?
@ When to stop?
@ How much time does it take?

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 /43

Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,%q) and
optimal is x* = (x},...,x}), thenc:-x* > c-X.

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 43

Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,%q) and
optimal is x* = (x},...,x}), thenc:-x* > c-X.

How does (c - x) change as we move from X to x* on the line joining
the two?

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 43

Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,%q) and
optimal is x* = (x},...,x}), thenc:-x* > c-X.

How does (c - x) change as we move from X to x* on the line joining
the two?

Strictly increases!

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 43

Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,%q) and
optimal is x* = (x},...,x}), thenc:-x* > c-X.

How does (c - x) change as we move from X to x* on the line joining
the two?

Strictly increases!

o d = x* — X is the direction from X to x*.
(c-d)=(c:-x*) —(c-%x) >0.
@ In x = X+ dd, as é goes from 0 to 1, we move from X to x*.

@ c-x=c-X+ d(c-d). Strictly increasing with §!
@ Due to convexity, all of these are feasible points.

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 43

Cone

Definition
Given a set of vectors D = {dj, ..., dy}, the cone spanned by them
is just their positive linear combinations, i.e.,

k
cone(D) = {d | d = > _ \idi, where X; > 0, Vi}
i=1

Chandra & Ruta (UIUC) CS473 Fall 2016 27 / 43

Cone (Contd.)

Lemma

Ifd € cone(D) and (c - d) > 0, then there exists d; such that
(C . d.) > 0

Proof.

To the contrary suppose (c - d;) < 0, Vi < k.
Since d is a positive linear combination of d;'s,

(c- Z:;l Aid;)
g::;l Ai(c - dy)

(c-d) =

IA

A contradiction!]

4

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 43

Improving Direction Implies Improving Neighbor

Let zy,...,2x be the neighboring vertices of X. And let d; = z; — X
be the direction from X to z;.

Z1

Any feasible direction of
movement d from X is in the

cone({dy,...,dc}).

ds

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 43

Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,%q) and
optimal is x* = (x},...,x}), thenc:x* > c-X.

o d = x* — X is the direction from X to x*.
o (c-d)=(c-x*)—(c-%) > 0.

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30/ 43

Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,%q) and
optimal is x* = (x},...,x}), thenc:x* > c-X.

o d = x* — X is the direction from X to x*.

@ (c-d)=(c-x*)—(c-x) > 0.

o Let d; be the direction towards neighbor z;.

o d € Cone({dy,...,d¢}) = 3d;, (c-di) > 0.

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30/ 43

Observations

For Simplex

Suppose we are at a non-optimal vertex X = (X1,...,%q) and
optimal is x* = (x},...,x}), thenc:x* > c-X.

o d = x* — X is the direction from X to x*.

o (c-d)=(c-x*)—(c-%x) > 0.

o Let d; be the direction towards neighbor z;.

o d € Cone({dy,...,d¢}) = 3d;, (c-di) > 0.

If vertex X is not optimal then it has a neighbor where cost improves. \

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30/ 43

How Many Neighbors a Vertex Has?

Geometric view...

A € R4 (n > d), b € R", the
constraints are: Ax < b

Faces

@ n constraints/inequalities.
Each defines a hyperplane.

@ Vertex: 0-dimensional face.
Edge: 1D face. ...
Hyperplane: (d — 1)D face.

Chandra & Ruta (UIUC) CS473 31 Fall 2016 31/43

How Many Neighbors a Vertex Has?

Geometric view...

A € R4 (n > d), b € R", the
constraints are: Ax < b

Faces

@ n constraints/inequalities.
Each defines a hyperplane.

@ Vertex: 0-dimensional face.
Edge: 1D face. ...
Hyperplane: (d — 1)D face.

@ r linearly independent
hyperplanes forms d — r
dimensional face.

Chandra & Ruta (UIUC) CS473 31 Fall 2016 31/43

How Many Neighbors a Vertex Has?

Geometric view...

A € R4 (n > d), b € R", the
constraints are: Ax < b

Faces

@ n constraints/inequalities.
Each defines a hyperplane.

@ Vertex: 0-dimensional face.
Edge: 1D face. ...
Hyperplane: (d — 1)D face.

@ r linearly independent
hyperplanes forms d — r
dimensional face.

@ Vertices being of 0D, d L.I.
hyperplanes form a vertex.

Chandra & Ruta (UIUC) CS473 31 Fall 2016 31/43

How Many Neighbors a Vertex Has?

Geometric view...

A € R4 (n > d), b €R" the

constraints are: Ax < b In 2-dimension (d = 2)

Faces

@ n constraints/inequalities.
Each defines a hyperplane.

@ Vertex: 0-dimensional face.
Edge: 1D face. ...
Hyperplane: (d — 1)D face.

@ r linearly independent
hyperplanes forms d — r
dimensional face.

@ Vertices being of 0D, d L.I.
hyperplanes form a vertex.

Chandra & Ruta (UIUC) CS473 31 Fall 2016 31/43

How Many Neighbors a Vertex Has?

Geometric view...

A € R4 (n > d), b € R", the
constraints are: Ax < b

Faces

@ n constraints/inequalities.
Each defines a hyperplane.

@ Vertex: 0-dimensional face.
Edge: 1D face. ...
Hyperplane: (d — 1)D face.

@ r linearly independent
hyperplanes forms d — r
dimensional face.

@ Vertices being of 0D, d L.I.
hyperplanes form a vertex.

Chandra & Ruta (UIUC) CS473

In 3-dimension (d = 3)

X3

4

et

/x;‘x_f

image source: webpage of Prof. Forbes W. Lewis

32 Fall 2016 32/43

How Many Neighbors a Vertex Has?

Geometry view...

One neighbor per tight hyperplane. Therefore typically d.

@ Suppose X’ is a neighbor of X,

then on the edge joining the X3
t_/vo d — 1 hyperplanes are o %
tight. 2
@ These d — 1 are also tight at ®
both %X and x’. @ —
@ In addition one more 1
hyperplane, say (Ax); = by, #
is tight at X. “Relaxing” this .
at X leads to x’.
Chandra & Ruta (UIUC) CS473 33 Fall 2016

33 /43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

@ Which neighbor to move to? One where objective value
increases.

Chandra & Ruta (UIUC) CS473 34 Fall 2016 34 /43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

@ Which neighbor to move to? One where objective value
increases.

@ When to stop? When no neighbor with better objective value.

Chandra & Ruta (UIUC) CS473 34 Fall 2016 34 /43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

@ Which neighbor to move to? One where objective value
increases.

@ When to stop? When no neighbor with better objective value.

@ How much time does it take? At most d neighbors to consider
in each step.

Chandra & Ruta (UIUC) CS473 34 Fall 2016 34 /43

Simplex in 2-d

Simplex Algorithm

© Start from some vertex of the feasible polygon.

© Compare value of objective function at current vertex with the
value at 2 “neighboring” vertices of polygon.

© If neighboring vertex improves objective function, move to this
vertex, and repeat step 2.

@ If no improving neighbor (local optimum), then stop.

Chandra & Ruta (UIUC) CS473 35 Fall 2016 35 /43

Simplex in Higher Dimensions

Simplex Algorithm

© Start at a vertex of the polytope.
@ Compare value of objective function at each of the d
“neighbors” .

© Move to neighbor that improves objective function, and repeat
step 2.

Q If no improving neighbor, then stop.

Chandra & Ruta (UIUC) CS473 36 Fall 2016 36 / 43

Simplex in Higher Dimensions

Simplex Algorithm

© Start at a vertex of the polytope.
@ Compare value of objective function at each of the d
“neighbors” .

© Move to neighbor that improves objective function, and repeat
step 2.

Q If no improving neighbor, then stop.

Simplex is a greedy local-improvement algorithm! Works because a
local optimum is also a global optimum — convexity of polyhedra.

Chandra & Ruta (UIUC) CS473 36 Fall 2016 36 / 43

Solving Linear Programming in Practice

© Naive implementation of Simplex algorithm can be very
inefficient

Chandra & Ruta (UIUC) CS473 37 Fall 2016 37 /43

Solving Linear Programming in Practice

© Naive implementation of Simplex algorithm can be very
inefficient — Exponential number of steps!

Chandra & Ruta (UIUC) CS473 37 Fall 2016 37 /43

Solving Linear Programming in Practice

© Naive implementation of Simplex algorithm can be very
inefficient
@ Choosing which neighbor to move to can significantly affect
running time
@ Very efficient Simplex-based algorithms exist
@ Simplex algorithm takes exponential time in the worst case but
works extremely well in practice with many improvements over
the years
@ Non Simplex based methods like interior point methods work
well for large problems.

Chandra & Ruta (UIUC) CS473 38 Fall 2016 38 /43

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?

Chandra & Ruta (UIUC) CS473 39 Fall 2016 39 /43

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

@ major theoretical advance
@ highly impractical algorithm, not used at all in practice
© routinely used in theoretical proofs.

Chandra & Ruta (UIUC) CS473 39 Fall 2016 39 /43

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

@ major theoretical advance
@ highly impractical algorithm, not used at all in practice
© routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time
algorithm, the interior point method.

@ very practical for some large problems and beats simplex

@ also revolutionized theory of interior point methods

Chandra & Ruta (UIUC) CS473 39 Fall 2016 39 /43

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

@ major theoretical advance
@ highly impractical algorithm, not used at all in practice
© routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time
algorithm, the interior point method.

@ very practical for some large problems and beats simplex
@ also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved
enormously and is the method of choice.

Chandra & Ruta (UIUC) CS473 39 Fall 2016 39 /43

© The linear program could be infeasible: No points satisfy the
constraints.

© The linear program could be unbounded: Polygon unbounded in
the direction of the objective function.

© More than d hyperplanes could be tight at a vertex, forming
more than d neighbors.

Chandra & Ruta (UIUC) CS473 40 Fall 2016 40 / 43

Infeasibility: Example

maximize X1 + 6x,
subjectto x3 <2 x, <1 x34+x,>4
X1, X2 Z 0

Infeasibility has to do only with constraints.

Chandra & Ruta (UIUC) CS473 41 Fall 2016 41 /43

Infeasibility: Example

maximize X1 + 6x,
subjectto x3 <2 x, <1 x34+x,>4
X1, X2 Z 0

Infeasibility has to do only with constraints.

No starting vertex for Simplex.

Chandra & Ruta (UIUC) CS473 41 Fall 2016 41 /43

Infeasibility: Example

maximize X1 + 6x,
subjectto x3 <2 x, <1 x34+x,>4
X1, X2 Z 0

Infeasibility has to do only with constraints.

No starting vertex for Simplex. How to detect this?

Chandra & Ruta (UIUC) CS473 41 Fall 2016 41 /43

Unboundedness: Example

maximize Xp
X1 + X2
X1, X2

(AVARAV]
)

Unboundedness depends on both constraints and the objective
function.

Chandra & Ruta (UIUC) CS473 42 Fall 2016 42 / 43

Unboundedness: Example

maximize Xp
X1+ x2 >
X1, X2 Z 0

Unboundedness depends on both constraints and the objective
function.

If unbounded in the direction of objective function, then Simplex
detects it.

Chandra & Ruta (UIUC) CS473 42 Fall 2016 42 / 43

Degeneracy and Cycling

More than d inequalities tight at a vertex.

max zp + 6z2 + 1323
1 < 200
9 < 300
r1 + x9 + x3 < 400
o + 3x3 < 600
x>0
a0 >0
x3 >0

CECNCECECECKC

Chandra & Ruta (UIUC) CS473 43 Fall 2016 43 / 43

Degeneracy and Cycling

More than d inequalities tight at a vertex.

max zp + 6z2 + 1323
1 < 200
9 < 300
r1 + x9 + x3 < 400
o + 3x3 < 600
x>0
a0 >0
x3 >0

CECNCECECECKC

Depending on how Simplex is implemented, it may cycle at this
vertex.

We will see how in the next lecture.
Chandra & Ruta (UIUC) CS473 43 Fall 2016 43 /' 43

	Introduction to Linear Programming
	Introduction
	Examples
	General Form
	Canonical Forms
	History

	Solving Linear Programs
	Algorithm for 2 Dimensions
	Simplex in 2 Dimensions
	Simplex

