
CS 473: Algorithms

Chandra Chekuri Ruta Mehta

University of Illinois, Urbana-Champaign

Fall 2016

Chandra & Ruta (UIUC) CS473 1 Fall 2016 1 / 43

CS 473: Algorithms, Fall 2016

Introduction to Linear
Programming
Lecture 18
October 26, 2016

Chandra & Ruta (UIUC) CS473 2 Fall 2016 2 / 43

Part I

Introduction to Linear Programming

Chandra & Ruta (UIUC) CS473 3 Fall 2016 3 / 43

A Factory Example

Problem
Suppose a factory produces two products 1 and 2 using resources
A,B,C.

1 Making a unit of 1 requires a unit each of A and C.

2 A unit of 2 requires one unit of B and C.

3 We have 200 units of A, 300 units of B, and 400 units of C.

4 Product 1 can be sold for $1 and product 2 for $6.

How many units of product 1 and product 2 should the factory
manufacture to maximize profit?

Solution: Formulate as a linear program.

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 / 43

A Factory Example

Problem
Suppose a factory produces two products 1 and 2 using resources
A,B,C.

1 Making a unit of 1 requires a unit each of A and C.

2 A unit of 2 requires one unit of B and C.

3 We have 200 units of A, 300 units of B, and 400 units of C.

4 Product 1 can be sold for $1 and product 2 for $6.

How many units of product 1 and product 2 should the factory
manufacture to maximize profit?

Solution:

Formulate as a linear program.

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 / 43

A Factory Example

Problem
Suppose a factory produces two products 1 and 2 using resources
A,B,C.

1 Making a unit of 1 requires a unit each of A and C.

2 A unit of 2 requires one unit of B and C.

3 We have 200 units of A, 300 units of B, and 400 units of C.

4 Product 1 can be sold for $1 and product 2 for $6.

How many units of product 1 and product 2 should the factory
manufacture to maximize profit?

Solution: Formulate as a linear program.

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 / 43

A Factory Example

Problem
Suppose a factory produces two
products 1 and 2, using resources
A,B,C.

1 Making a unit of 1: Req. one
unit of A, C.

2 Making unit of 2: Req. one
unit of B,C.

3 Have A: 200, B: 300 , and
C: 400.

4 Price of 1: $1, and 2: $6.

How many units of 1 and 2 to
manufacture to max profit?

max x1 + 6x2

s.t. x1 ≤ 200 (A)

x2 ≤ 300 (B)

x1 + x2 ≤ 400 (C)

x1 ≥ 0

x2 ≥ 0

Chandra & Ruta (UIUC) CS473 5 Fall 2016 5 / 43

A Factory Example

Problem
Suppose a factory produces two
products 1 and 2, using resources
A,B,C.

1 Making a unit of 1: Req. one
unit of A, C.

2 Making unit of 2: Req. one
unit of B,C.

3 Have A: 200, B: 300 , and
C: 400.

4 Price of 1: $1, and 2: $6.

How many units of 1 and 2 to
manufacture to max profit?

max x1 + 6x2

s.t. x1 ≤ 200 (A)

x2 ≤ 300 (B)

x1 + x2 ≤ 400 (C)

x1 ≥ 0

x2 ≥ 0

Chandra & Ruta (UIUC) CS473 5 Fall 2016 5 / 43

Linear Programming Formulation

Let us produce x1 units of product 1 and x2 units of product 2. Our
profit can be computed by solving

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

What is the solution?

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 43

Linear Programming Formulation

Let us produce x1 units of product 1 and x2 units of product 2. Our
profit can be computed by solving

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

What is the solution?

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 43

Maximum Flow in Network

s

1

2

3

4

5

6

t

15

5

10

30

8

4

9

4
15

6
10

10

15

15
10

Need to compute values
fs1, fs2, . . . f25, . . . f5t, f6t such that

fs1 ≤ 15 fs2 ≤ 5 fs3 ≤ 10
f14 ≤ 30 f21 ≤ 4 f25 ≤ 8
f32 ≤ 4 f35 ≤ 15 f36 ≤ 9
f42 ≤ 6 f4t ≤ 10 f54 ≤ 15
f5t ≤ 10 f65 ≤ 15 f6t ≤ 10

and

fs1 + f21 = f14 fs2 + f32 = f21 + f25 fs3 = f32 + f35 + f36

f14 + f54 = f42 + f4t f25 + f35 + f65 = f54 + f5t f36 = f65 + f6t

fs1 ≥ 0 fs2 ≥ 0 fs3 ≥ 0 · · · f4t ≥ 0 f5t ≥ 0 f6t ≥ 0

and fs1 + fs2 + fs3 is maximized.

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 43

Maximum Flow in Network

s

1

2

3

4

5

6

t

15

5

10

30

8

4

9

4
15

6
10

10

15

15
10

Need to compute values
fs1, fs2, . . . f25, . . . f5t, f6t such that

fs1 ≤ 15 fs2 ≤ 5 fs3 ≤ 10
f14 ≤ 30 f21 ≤ 4 f25 ≤ 8
f32 ≤ 4 f35 ≤ 15 f36 ≤ 9
f42 ≤ 6 f4t ≤ 10 f54 ≤ 15
f5t ≤ 10 f65 ≤ 15 f6t ≤ 10

and

fs1 + f21 = f14 fs2 + f32 = f21 + f25 fs3 = f32 + f35 + f36

f14 + f54 = f42 + f4t f25 + f35 + f65 = f54 + f5t f36 = f65 + f6t

fs1 ≥ 0 fs2 ≥ 0 fs3 ≥ 0 · · · f4t ≥ 0 f5t ≥ 0 f6t ≥ 0

and fs1 + fs2 + fs3 is maximized.

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 43

Maximum Flow in Network

s

1

2

3

4

5

6

t

15

5

10

30

8

4

9

4
15

6
10

10

15

15
10

Need to compute values
fs1, fs2, . . . f25, . . . f5t, f6t such that

fs1 ≤ 15 fs2 ≤ 5 fs3 ≤ 10
f14 ≤ 30 f21 ≤ 4 f25 ≤ 8
f32 ≤ 4 f35 ≤ 15 f36 ≤ 9
f42 ≤ 6 f4t ≤ 10 f54 ≤ 15
f5t ≤ 10 f65 ≤ 15 f6t ≤ 10

and

fs1 + f21 = f14 fs2 + f32 = f21 + f25 fs3 = f32 + f35 + f36

f14 + f54 = f42 + f4t f25 + f35 + f65 = f54 + f5t f36 = f65 + f6t

fs1 ≥ 0 fs2 ≥ 0 fs3 ≥ 0 · · · f4t ≥ 0 f5t ≥ 0 f6t ≥ 0

and fs1 + fs2 + fs3 is maximized.

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 43

Maximum Flow in Network

s

1

2

3

4

5

6

t

15

5

10

30

8

4

9

4
15

6
10

10

15

15
10

Need to compute values
fs1, fs2, . . . f25, . . . f5t, f6t such that

fs1 ≤ 15 fs2 ≤ 5 fs3 ≤ 10
f14 ≤ 30 f21 ≤ 4 f25 ≤ 8
f32 ≤ 4 f35 ≤ 15 f36 ≤ 9
f42 ≤ 6 f4t ≤ 10 f54 ≤ 15
f5t ≤ 10 f65 ≤ 15 f6t ≤ 10

and

fs1 + f21 = f14 fs2 + f32 = f21 + f25 fs3 = f32 + f35 + f36

f14 + f54 = f42 + f4t f25 + f35 + f65 = f54 + f5t f36 = f65 + f6t

fs1 ≥ 0 fs2 ≥ 0 fs3 ≥ 0 · · · f4t ≥ 0 f5t ≥ 0 f6t ≥ 0

and fs1 + fs2 + fs3 is maximized.

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 43

Maximum Flow in Network

s

1

2

3

4

5

6

t

15

5

10

30

8

4

9

4
15

6
10

10

15

15
10

Need to compute values
fs1, fs2, . . . f25, . . . f5t, f6t such that

fs1 ≤ 15 fs2 ≤ 5 fs3 ≤ 10
f14 ≤ 30 f21 ≤ 4 f25 ≤ 8
f32 ≤ 4 f35 ≤ 15 f36 ≤ 9
f42 ≤ 6 f4t ≤ 10 f54 ≤ 15
f5t ≤ 10 f65 ≤ 15 f6t ≤ 10

and

fs1 + f21 = f14 fs2 + f32 = f21 + f25 fs3 = f32 + f35 + f36

f14 + f54 = f42 + f4t f25 + f35 + f65 = f54 + f5t f36 = f65 + f6t

fs1 ≥ 0 fs2 ≥ 0 fs3 ≥ 0 · · · f4t ≥ 0 f5t ≥ 0 f6t ≥ 0

and fs1 + fs2 + fs3 is maximized.

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 43

Maximum Flow in Network

s

1

2

3

4

5

6

t

15

5

10

30

8

4

9

4
15

6
10

10

15

15
10

Need to compute values
fs1, fs2, . . . f25, . . . f5t, f6t such that

fs1 ≤ 15 fs2 ≤ 5 fs3 ≤ 10
f14 ≤ 30 f21 ≤ 4 f25 ≤ 8
f32 ≤ 4 f35 ≤ 15 f36 ≤ 9
f42 ≤ 6 f4t ≤ 10 f54 ≤ 15
f5t ≤ 10 f65 ≤ 15 f6t ≤ 10

and

fs1 + f21 = f14 fs2 + f32 = f21 + f25 fs3 = f32 + f35 + f36

f14 + f54 = f42 + f4t f25 + f35 + f65 = f54 + f5t f36 = f65 + f6t

fs1 ≥ 0 fs2 ≥ 0 fs3 ≥ 0 · · · f4t ≥ 0 f5t ≥ 0 f6t ≥ 0

and fs1 + fs2 + fs3 is maximized.

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 43

Maximum Flow as a Linear Program

For a general flow network G = (V,E) with capacities ce on edge
e ∈ E, we have variables fe indicating flow on edge e

Maximize
∑

e out of s

fe

subject to fe ≤ ce for each e ∈ E∑
e out of v

fe −
∑

e into v

fe = 0 ∀v ∈ V \ {s, t}

fe ≥ 0 for each e ∈ E.

Number of variables: m, one for each edge.
Number of constraints: m + n− 2 + m.

Chandra & Ruta (UIUC) CS473 8 Fall 2016 8 / 43

Maximum Flow as a Linear Program

For a general flow network G = (V,E) with capacities ce on edge
e ∈ E, we have variables fe indicating flow on edge e

Maximize
∑

e out of s

fe

subject to fe ≤ ce for each e ∈ E∑
e out of v

fe −
∑

e into v

fe = 0 ∀v ∈ V \ {s, t}

fe ≥ 0 for each e ∈ E.

Number of variables: m, one for each edge.
Number of constraints: m + n− 2 + m.

Chandra & Ruta (UIUC) CS473 8 Fall 2016 8 / 43

Minimum Cost Flow with Lower Bounds
... as a Linear Program

For a general flow network G = (V,E) with capacities ce, lower
bounds `e, and costs we, we have variables fe indicating flow on edge
e. Suppose we want a min-cost flow of value at least v.

Minimize
∑
e ∈ E

wefe

subject to
∑

e out of s

fe ≥ v

fe ≤ ce fe ≥ `e for each e ∈ E∑
e out of v

fe −
∑

e into v

fe = 0 for each v ∈ V − {s, t}

fe ≥ 0 for each e ∈ E.

Number of variables: m, one for each edge
Number of constraints: 1 + m + m + n− 2 + m = 3m + n− 1.

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 43

Minimum Cost Flow with Lower Bounds
... as a Linear Program

For a general flow network G = (V,E) with capacities ce, lower
bounds `e, and costs we, we have variables fe indicating flow on edge
e. Suppose we want a min-cost flow of value at least v.

Minimize
∑
e ∈ E

wefe

subject to
∑

e out of s

fe ≥ v

fe ≤ ce fe ≥ `e for each e ∈ E∑
e out of v

fe −
∑

e into v

fe = 0 for each v ∈ V − {s, t}

fe ≥ 0 for each e ∈ E.

Number of variables: m, one for each edge
Number of constraints: 1 + m + m + n− 2 + m = 3m + n− 1.

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 43

Linear Programs

Problem
Find a vector x ∈ Rd that

maximize/minimize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . p∑d
j=1 aijxj = bi for i = p + 1 . . . q∑d
j=1 aijxj ≥ bi for i = q + 1 . . . n

Input is matrix A = (aij) ∈ Rn×d, column vector b = (bi) ∈ Rn,
and row vector c = (cj) ∈ Rd

Chandra & Ruta (UIUC) CS473 10 Fall 2016 10 / 43

Linear Programs

Problem
Find a vector x ∈ Rd that

maximize/minimize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . p∑d
j=1 aijxj = bi for i = p + 1 . . . q∑d
j=1 aijxj ≥ bi for i = q + 1 . . . n

Input is matrix A = (aij) ∈ Rn×d, column vector b = (bi) ∈ Rn,
and row vector c = (cj) ∈ Rd

Chandra & Ruta (UIUC) CS473 10 Fall 2016 10 / 43

Canonical Form of Linear Programs

Canonical Form
A linear program is in canonical form if it has the following structure

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . n

Conversion to Canonical Form
1 Replace

∑
j aijxj = bi by

∑
j aijxj ≤ bi and −

∑
j aijxj ≤ −bi

2 Replace
∑

j aijxj ≥ bi by −
∑

j aijxj ≤ −bi

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 43

Canonical Form of Linear Programs

Canonical Form
A linear program is in canonical form if it has the following structure

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . n

Conversion to Canonical Form
1 Replace

∑
j aijxj = bi by

∑
j aijxj ≤ bi and −

∑
j aijxj ≤ −bi

2 Replace
∑

j aijxj ≥ bi by −
∑

j aijxj ≤ −bi

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 43

Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize c · x
subject to Ax ≤ b

where A = (aij) ∈ Rn×d, column vector b = (bi) ∈ Rn, row vector
c = (cj) ∈ Rd, and column vector x = (xj) ∈ Rd

1 Number of variable is d

2 Number of constraints is n

Chandra & Ruta (UIUC) CS473 12 Fall 2016 12 / 43

Other Standard Forms for Linear Programs

maximize c · x
subject to Ax ≤ b

x ≥ 0

minimize c · x
subject to Ax ≥ b

x ≥ 0

minimize c · x
subject to Ax = b

x ≥ 0

Chandra & Ruta (UIUC) CS473 13 Fall 2016 13 / 43

Linear Programming: A History

1 First formal application to problems in economics by Leonid
Kantorovich in the 1930s

1 However, work was ignored behind the Iron Curtain and
unknown in the West

2 Rediscovered by Tjalling Koopmans in the 1940s, along with
applications to economics

3 First algorithm (Simplex) to solve linear programs by George
Dantzig in 1947

4 Kantorovich and Koopmans receive Nobel Prize for economics in
1975 ; Dantzig, however, was ignored

1 Koopmans contemplated refusing the Nobel Prize to protest
Dantzig’s exclusion, but Kantorovich saw it as a vindication for
using mathematics in economics, which had been written off as
“a means for apologists of capitalism”

Chandra & Ruta (UIUC) CS473 14 Fall 2016 14 / 43

Back to the Factory example

Produce x1 units of product 1 and x2 units of product 2. Our profit
can be computed by solving

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

What is the solution?

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 43

Back to the Factory example

Produce x1 units of product 1 and x2 units of product 2. Our profit
can be computed by solving

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

What is the solution?

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 43

Solving the Factory Example

x2

x1

300

200

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

1 Feasible values of x1 and x2 are shaded
region.

Chandra & Ruta (UIUC) CS473 16 Fall 2016 16 / 43

Solving the Factory Example

x2

x1

300

200

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

1 Feasible values of x1 and x2 are shaded
region.

2 Objective (Cost) function is a direction —
the line represents all points with same
value of the function

; moving the line until
it just leaves the feasible region, gives
optimal values.

Chandra & Ruta (UIUC) CS473 16 Fall 2016 16 / 43

Solving the Factory Example

x2

x1

300

200

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

1 Feasible values of x1 and x2 are shaded
region.

2 Objective (Cost) function is a direction —
the line represents all points with same
value of the function; moving the line until
it just leaves the feasible region, gives
optimal values.

Chandra & Ruta (UIUC) CS473 16 Fall 2016 16 / 43

Linear Programming in 2-d

1 Each constraint a half plane

2 Feasible region is intersection of finitely many half planes — it
forms a polygon

3 For a fixed value of objective function, we get a line. Parallel
lines correspond to different values for objective function.

4 Optimum achieved when objective function line just leaves the
feasible region

Chandra & Ruta (UIUC) CS473 17 Fall 2016 17 / 43

An Example in 3-dS. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 227

Figure 7.12 A polyhedron defined by seven inequalities.

x1

x3

x2

1©

4©

2©

3©

5©

6©

7©

A

B C

max x1 + 6x2 + 13x3

x1 ≤ 200 1©
x2 ≤ 300 2©

x1 + x2 + x3 ≤ 400 3©
x2 + 3x3 ≤ 600 4©

x1 ≥ 0 5©
x2 ≥ 0 6©
x3 ≥ 0 7©

7.6 The simplex algorithm
The extraordinary power and expressiveness of linear programs would be little consolation if
we did not have a way to solve them efficiently. This is the role of the simplex algorithm.
At a high level, the simplex algorithm takes a set of linear inequalities and a linear objec-

tive function and finds the optimal feasible point by the following strategy:

let v be any vertex of the feasible region

while there is a neighbor v′ of v with better objective value:

set v = v′

In our 2D and 3D examples (Figure 7.1 and Figure 7.2), this was simple to visualize and made
intuitive sense. But what if there are n variables, x1, . . . , xn?
Any setting of the xi’s can be represented by an n-tuple of real numbers and plotted in

n-dimensional space. A linear equation involving the xi’s defines a hyperplane in this same
space Rn, and the corresponding linear inequality defines a half-space, all points that are
either precisely on the hyperplane or lie on one particular side of it. Finally, the feasible region
of the linear program is specified by a set of inequalities and is therefore the intersection of
the corresponding half-spaces, a convex polyhedron.
But what do the concepts of vertex and neighbor mean in this general context?

7.6.1 Vertices and neighbors in n-dimensional space
Figure 7.12 recalls an earlier example. Looking at it closely, we see that each vertex is the
unique point at which some subset of hyperplanes meet. Vertex A, for instance, is the sole
point at which constraints 2©, 3©, and 7© are satisfied with equality. On the other hand, the

Figure from Dasgupta etal book.

Chandra & Ruta (UIUC) CS473 18 Fall 2016 18 / 43

Factory Example: Alternate View

Original Problem
Recall we have,

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

Transformation
Consider new variable z1 and z2, such that z1 = x1 + 6x2 and
z2 = x2. Then x1 = z1− 6z2. In terms of the new variables we have

maximize z1

subject to z1 − 6z2 ≤ 200 z2 ≤ 300 z1 − 5z2 ≤ 400
z1 − 6z2 ≥ 0 z2 ≥ 0

Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 43

Factory Example: Alternate View

Original Problem
Recall we have,

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

Transformation
Consider new variable z1 and z2, such that z1 = x1 + 6x2 and
z2 = x2. Then x1 = z1− 6z2. In terms of the new variables we have

maximize z1

subject to z1 − 6z2 ≤ 200 z2 ≤ 300 z1 − 5z2 ≤ 400
z1 − 6z2 ≥ 0 z2 ≥ 0

Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 43

Transformed Picture

Feasible region rotated, and optimal value at the right-most point on
polygon

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 43

Observations about the Transformation

Observations
1 Linear program can always be transformed to get a linear

program where the optimal value is achieved at the point in the
feasible region with highest x-coordinate

2 Optimum value attained at a vertex of the polygon

3 Since feasible region is convex, and objective function linear,
every local optimum is a global optimum

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 43

A Simple Algorithm in 2-d

1 optimum solution is at a vertex of the feasible region

2 a vertex is defined by the intersection of two lines (constraints)

Algorithm:

1 find all intersections between the n lines — n2 points
2 for each intersection point p = (p1, p2)

1 check if p is in feasible region (how?)
2 if p is feasible evaluate objective function at p:

val(p) = c1p1 + c2p2

3 Output the feasible point with the largest value

Running time: O(n3).

Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 / 43

A Simple Algorithm in 2-d

1 optimum solution is at a vertex of the feasible region

2 a vertex is defined by the intersection of two lines (constraints)

Algorithm:

1 find all intersections between the n lines — n2 points
2 for each intersection point p = (p1, p2)

1 check if p is in feasible region (how?)
2 if p is feasible evaluate objective function at p:

val(p) = c1p1 + c2p2

3 Output the feasible point with the largest value

Running time: O(n3).

Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 / 43

A Simple Algorithm in 2-d

1 optimum solution is at a vertex of the feasible region

2 a vertex is defined by the intersection of two lines (constraints)

Algorithm:

1 find all intersections between the n lines — n2 points
2 for each intersection point p = (p1, p2)

1 check if p is in feasible region (how?)
2 if p is feasible evaluate objective function at p:

val(p) = c1p1 + c2p2

3 Output the feasible point with the largest value

Running time: O(n3).

Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 / 43

Simple Algorithm in d Dimensions

Real problem: d-dimensions

1 optimum solution is at a vertex of the feasible region

2 a vertex is defined by the intersection of d hyperplanes

3 number of vertices can be Ω(nd)

Running time: O(nd+1) which is not polynomial since problem size is
at least nd. Also not practical.

How do we find the intersection point of d hyperplanes in Rd? Using
Gaussian elimination to solve Ax = b where A is a d× d matrix and
b is a d× 1 matrix.

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 / 43

Simple Algorithm in d Dimensions

Real problem: d-dimensions

1 optimum solution is at a vertex of the feasible region

2 a vertex is defined by the intersection of d hyperplanes

3 number of vertices can be Ω(nd)

Running time: O(nd+1) which is not polynomial since problem size is
at least nd. Also not practical.

How do we find the intersection point of d hyperplanes in Rd?

Using
Gaussian elimination to solve Ax = b where A is a d× d matrix and
b is a d× 1 matrix.

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 / 43

Simple Algorithm in d Dimensions

Real problem: d-dimensions

1 optimum solution is at a vertex of the feasible region

2 a vertex is defined by the intersection of d hyperplanes

3 number of vertices can be Ω(nd)

Running time: O(nd+1) which is not polynomial since problem size is
at least nd. Also not practical.

How do we find the intersection point of d hyperplanes in Rd? Using
Gaussian elimination to solve Ax = b where A is a d× d matrix and
b is a d× 1 matrix.

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 / 43

Linear Programming in d-dimensions

1 Each linear constraint defines a halfspace.

2 Feasible region, which is an intersection of halfspaces, is a
convex polyhedron.

3 Every local optimum is a global optimum.

4 Optimal value attained at a vertex of the polyhedron.

Chandra & Ruta (UIUC) CS473 24 Fall 2016 24 / 43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions
Which neighbor to move to?

When to stop?

How much time does it take?

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions
Which neighbor to move to?

When to stop?

How much time does it take?

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions
Which neighbor to move to?

When to stop?

How much time does it take?

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 43

Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ = (x̂1, . . . , x̂d) and
optimal is x∗ = (x∗1, . . . , x∗d), then c · x∗ > c · x̂.

How does (c · x) change as we move from x̂ to x∗ on the line joining
the two?

Strictly increases!

d = x∗ − x̂ is the direction from x̂ to x∗.

(c · d) = (c · x∗)− (c · x̂) > 0.

In x = x̂ + δd, as δ goes from 0 to 1, we move from x̂ to x∗.

c · x = c · x̂ + δ(c · d). Strictly increasing with δ!

Due to convexity, all of these are feasible points.

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 43

Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ = (x̂1, . . . , x̂d) and
optimal is x∗ = (x∗1, . . . , x∗d), then c · x∗ > c · x̂.

How does (c · x) change as we move from x̂ to x∗ on the line joining
the two?

Strictly increases!

d = x∗ − x̂ is the direction from x̂ to x∗.

(c · d) = (c · x∗)− (c · x̂) > 0.

In x = x̂ + δd, as δ goes from 0 to 1, we move from x̂ to x∗.

c · x = c · x̂ + δ(c · d). Strictly increasing with δ!

Due to convexity, all of these are feasible points.

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 43

Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ = (x̂1, . . . , x̂d) and
optimal is x∗ = (x∗1, . . . , x∗d), then c · x∗ > c · x̂.

How does (c · x) change as we move from x̂ to x∗ on the line joining
the two?

Strictly increases!

d = x∗ − x̂ is the direction from x̂ to x∗.

(c · d) = (c · x∗)− (c · x̂) > 0.

In x = x̂ + δd, as δ goes from 0 to 1, we move from x̂ to x∗.

c · x = c · x̂ + δ(c · d). Strictly increasing with δ!

Due to convexity, all of these are feasible points.

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 43

Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ = (x̂1, . . . , x̂d) and
optimal is x∗ = (x∗1, . . . , x∗d), then c · x∗ > c · x̂.

How does (c · x) change as we move from x̂ to x∗ on the line joining
the two?

Strictly increases!

d = x∗ − x̂ is the direction from x̂ to x∗.

(c · d) = (c · x∗)− (c · x̂) > 0.

In x = x̂ + δd, as δ goes from 0 to 1, we move from x̂ to x∗.

c · x = c · x̂ + δ(c · d). Strictly increasing with δ!

Due to convexity, all of these are feasible points.

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 43

Cone

Definition
Given a set of vectors D = {d1, . . . , dk}, the cone spanned by them
is just their positive linear combinations, i.e.,

cone(D) = {d | d =
k∑

i=1

λidi, where λi ≥ 0, ∀i}

Chandra & Ruta (UIUC) CS473 27 Fall 2016 27 / 43

Cone (Contd.)

Lemma
If d ∈ cone(D) and (c · d) > 0, then there exists di such that
(c · di) > 0.

Proof.
To the contrary suppose (c · di) ≤ 0, ∀i ≤ k.
Since d is a positive linear combination of di’s,

(c · d) = (c ·
∑k

i=1 λidi)

=
∑k

i=1 λi(c · di)
≤ 0

A contradiction!

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 43

Improving Direction Implies Improving Neighbor

Let z1, . . . , zk be the neighboring vertices of x̂. And let di = zi − x̂
be the direction from x̂ to zi.

Lemma
Any feasible direction of
movement d from x̂ is in the
cone({d1, . . . , dk}).

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 43

Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ = (x̂1, . . . , x̂d) and
optimal is x∗ = (x∗1, . . . , x∗d), then c · x∗ > c · x̂.

d = x∗ − x̂ is the direction from x̂ to x∗.

(c · d) = (c · x∗)− (c · x̂) > 0.

Let di be the direction towards neighbor zi.

d ∈ Cone({d1, . . . , dk})⇒ ∃di, (c · di) > 0.

Theorem
If vertex x̂ is not optimal then it has a neighbor where cost improves.

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 / 43

Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ = (x̂1, . . . , x̂d) and
optimal is x∗ = (x∗1, . . . , x∗d), then c · x∗ > c · x̂.

d = x∗ − x̂ is the direction from x̂ to x∗.

(c · d) = (c · x∗)− (c · x̂) > 0.

Let di be the direction towards neighbor zi.

d ∈ Cone({d1, . . . , dk})⇒ ∃di, (c · di) > 0.

Theorem
If vertex x̂ is not optimal then it has a neighbor where cost improves.

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 / 43

Observations
For Simplex

Suppose we are at a non-optimal vertex x̂ = (x̂1, . . . , x̂d) and
optimal is x∗ = (x∗1, . . . , x∗d), then c · x∗ > c · x̂.

d = x∗ − x̂ is the direction from x̂ to x∗.

(c · d) = (c · x∗)− (c · x̂) > 0.

Let di be the direction towards neighbor zi.

d ∈ Cone({d1, . . . , dk})⇒ ∃di, (c · di) > 0.

Theorem
If vertex x̂ is not optimal then it has a neighbor where cost improves.

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 / 43

How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Faces
n constraints/inequalities.
Each defines a hyperplane.

Vertex: 0-dimensional face.
Edge: 1D face. . . .
Hyperplane: (d− 1)D face.

r linearly independent
hyperplanes forms d− r
dimensional face.

Vertices being of 0D, d L.I.
hyperplanes form a vertex.

In 2-dimension (d = 2)

x2

x1

300

200

Chandra & Ruta (UIUC) CS473 31 Fall 2016 31 / 43

How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Faces
n constraints/inequalities.
Each defines a hyperplane.

Vertex: 0-dimensional face.
Edge: 1D face. . . .
Hyperplane: (d− 1)D face.

r linearly independent
hyperplanes forms d− r
dimensional face.

Vertices being of 0D, d L.I.
hyperplanes form a vertex.

In 2-dimension (d = 2)

x2

x1

300

200

Chandra & Ruta (UIUC) CS473 31 Fall 2016 31 / 43

How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Faces
n constraints/inequalities.
Each defines a hyperplane.

Vertex: 0-dimensional face.
Edge: 1D face. . . .
Hyperplane: (d− 1)D face.

r linearly independent
hyperplanes forms d− r
dimensional face.

Vertices being of 0D, d L.I.
hyperplanes form a vertex.

In 2-dimension (d = 2)

x2

x1

300

200

Chandra & Ruta (UIUC) CS473 31 Fall 2016 31 / 43

How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Faces
n constraints/inequalities.
Each defines a hyperplane.

Vertex: 0-dimensional face.
Edge: 1D face. . . .
Hyperplane: (d− 1)D face.

r linearly independent
hyperplanes forms d− r
dimensional face.

Vertices being of 0D, d L.I.
hyperplanes form a vertex.

In 2-dimension (d = 2)

x2

x1

300

200

Chandra & Ruta (UIUC) CS473 31 Fall 2016 31 / 43

How Many Neighbors a Vertex Has?
Geometric view...

A ∈ Rn×d (n > d), b ∈ Rn, the
constraints are: Ax ≤ b

Faces
n constraints/inequalities.
Each defines a hyperplane.

Vertex: 0-dimensional face.
Edge: 1D face. . . .
Hyperplane: (d− 1)D face.

r linearly independent
hyperplanes forms d− r
dimensional face.

Vertices being of 0D, d L.I.
hyperplanes form a vertex.

In 3-dimension (d = 3)

image source: webpage of Prof. Forbes W. Lewis

Chandra & Ruta (UIUC) CS473 32 Fall 2016 32 / 43

How Many Neighbors a Vertex Has?
Geometry view...

One neighbor per tight hyperplane. Therefore typically d.

Suppose x′ is a neighbor of x̂,
then on the edge joining the
two d− 1 hyperplanes are
tight.

These d− 1 are also tight at
both x̂ and x′.

In addition one more
hyperplane, say (Ax)i = bi,
is tight at x̂. “Relaxing” this
at x̂ leads to x′.

①

②

③

′

Chandra & Ruta (UIUC) CS473 33 Fall 2016 33 / 43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers
Which neighbor to move to? One where objective value
increases.

When to stop? When no neighbor with better objective value.

How much time does it take? At most d neighbors to consider
in each step.

Chandra & Ruta (UIUC) CS473 34 Fall 2016 34 / 43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers
Which neighbor to move to? One where objective value
increases.

When to stop? When no neighbor with better objective value.

How much time does it take? At most d neighbors to consider
in each step.

Chandra & Ruta (UIUC) CS473 34 Fall 2016 34 / 43

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers
Which neighbor to move to? One where objective value
increases.

When to stop? When no neighbor with better objective value.

How much time does it take? At most d neighbors to consider
in each step.

Chandra & Ruta (UIUC) CS473 34 Fall 2016 34 / 43

Simplex in 2-d

Simplex Algorithm
1 Start from some vertex of the feasible polygon.

2 Compare value of objective function at current vertex with the
value at 2 “neighboring” vertices of polygon.

3 If neighboring vertex improves objective function, move to this
vertex, and repeat step 2.

4 If no improving neighbor (local optimum), then stop.

Chandra & Ruta (UIUC) CS473 35 Fall 2016 35 / 43

Simplex in Higher Dimensions

Simplex Algorithm
1 Start at a vertex of the polytope.

2 Compare value of objective function at each of the d
“neighbors”.

3 Move to neighbor that improves objective function, and repeat
step 2.

4 If no improving neighbor, then stop.

Simplex is a greedy local-improvement algorithm! Works because a
local optimum is also a global optimum — convexity of polyhedra.

Chandra & Ruta (UIUC) CS473 36 Fall 2016 36 / 43

Simplex in Higher Dimensions

Simplex Algorithm
1 Start at a vertex of the polytope.

2 Compare value of objective function at each of the d
“neighbors”.

3 Move to neighbor that improves objective function, and repeat
step 2.

4 If no improving neighbor, then stop.

Simplex is a greedy local-improvement algorithm! Works because a
local optimum is also a global optimum — convexity of polyhedra.

Chandra & Ruta (UIUC) CS473 36 Fall 2016 36 / 43

Solving Linear Programming in Practice

1 Näıve implementation of Simplex algorithm can be very
inefficient

– Exponential number of steps!

Chandra & Ruta (UIUC) CS473 37 Fall 2016 37 / 43

Solving Linear Programming in Practice

1 Näıve implementation of Simplex algorithm can be very
inefficient – Exponential number of steps!

Chandra & Ruta (UIUC) CS473 37 Fall 2016 37 / 43

Solving Linear Programming in Practice

1 Näıve implementation of Simplex algorithm can be very
inefficient

1 Choosing which neighbor to move to can significantly affect
running time

2 Very efficient Simplex-based algorithms exist
3 Simplex algorithm takes exponential time in the worst case but

works extremely well in practice with many improvements over
the years

2 Non Simplex based methods like interior point methods work
well for large problems.

Chandra & Ruta (UIUC) CS473 38 Fall 2016 38 / 43

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

1 major theoretical advance

2 highly impractical algorithm, not used at all in practice

3 routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time
algorithm, the interior point method.

1 very practical for some large problems and beats simplex

2 also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved
enormously and is the method of choice.

Chandra & Ruta (UIUC) CS473 39 Fall 2016 39 / 43

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?
Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

1 major theoretical advance

2 highly impractical algorithm, not used at all in practice

3 routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time
algorithm, the interior point method.

1 very practical for some large problems and beats simplex

2 also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved
enormously and is the method of choice.

Chandra & Ruta (UIUC) CS473 39 Fall 2016 39 / 43

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?
Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

1 major theoretical advance

2 highly impractical algorithm, not used at all in practice

3 routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time
algorithm, the interior point method.

1 very practical for some large problems and beats simplex

2 also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved
enormously and is the method of choice.

Chandra & Ruta (UIUC) CS473 39 Fall 2016 39 / 43

Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time
algorithm for linear programming?
Leonid Khachiyan in 1979 gave the first polynomial time algorithm
using the Ellipsoid method.

1 major theoretical advance

2 highly impractical algorithm, not used at all in practice

3 routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time
algorithm, the interior point method.

1 very practical for some large problems and beats simplex

2 also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved
enormously and is the method of choice.

Chandra & Ruta (UIUC) CS473 39 Fall 2016 39 / 43

Degeneracy

1 The linear program could be infeasible: No points satisfy the
constraints.

2 The linear program could be unbounded: Polygon unbounded in
the direction of the objective function.

3 More than d hyperplanes could be tight at a vertex, forming
more than d neighbors.

Chandra & Ruta (UIUC) CS473 40 Fall 2016 40 / 43

Infeasibility: Example

maximize x1 + 6x2

subject to x1 ≤ 2 x2 ≤ 1 x1 + x2 ≥ 4
x1, x2 ≥ 0

Infeasibility has to do only with constraints.

No starting vertex for Simplex. How to detect this?

Chandra & Ruta (UIUC) CS473 41 Fall 2016 41 / 43

Infeasibility: Example

maximize x1 + 6x2

subject to x1 ≤ 2 x2 ≤ 1 x1 + x2 ≥ 4
x1, x2 ≥ 0

Infeasibility has to do only with constraints.

No starting vertex for Simplex.

How to detect this?

Chandra & Ruta (UIUC) CS473 41 Fall 2016 41 / 43

Infeasibility: Example

maximize x1 + 6x2

subject to x1 ≤ 2 x2 ≤ 1 x1 + x2 ≥ 4
x1, x2 ≥ 0

Infeasibility has to do only with constraints.

No starting vertex for Simplex. How to detect this?

Chandra & Ruta (UIUC) CS473 41 Fall 2016 41 / 43

Unboundedness: Example

maximize x2

x1 + x2 ≥ 2

x1, x2 ≥ 0

Unboundedness depends on both constraints and the objective
function.

If unbounded in the direction of objective function, then Simplex
detects it.

Chandra & Ruta (UIUC) CS473 42 Fall 2016 42 / 43

Unboundedness: Example

maximize x2

x1 + x2 ≥ 2

x1, x2 ≥ 0

Unboundedness depends on both constraints and the objective
function.

If unbounded in the direction of objective function, then Simplex
detects it.

Chandra & Ruta (UIUC) CS473 42 Fall 2016 42 / 43

Degeneracy and Cycling

More than d inequalities tight at a vertex.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 227

Figure 7.12 A polyhedron defined by seven inequalities.

x1

x3

x2

1©

4©

2©

3©

5©

6©

7©

A

B C

max x1 + 6x2 + 13x3

x1 ≤ 200 1©
x2 ≤ 300 2©

x1 + x2 + x3 ≤ 400 3©
x2 + 3x3 ≤ 600 4©

x1 ≥ 0 5©
x2 ≥ 0 6©
x3 ≥ 0 7©

7.6 The simplex algorithm
The extraordinary power and expressiveness of linear programs would be little consolation if
we did not have a way to solve them efficiently. This is the role of the simplex algorithm.
At a high level, the simplex algorithm takes a set of linear inequalities and a linear objec-

tive function and finds the optimal feasible point by the following strategy:

let v be any vertex of the feasible region

while there is a neighbor v′ of v with better objective value:

set v = v′

In our 2D and 3D examples (Figure 7.1 and Figure 7.2), this was simple to visualize and made
intuitive sense. But what if there are n variables, x1, . . . , xn?
Any setting of the xi’s can be represented by an n-tuple of real numbers and plotted in

n-dimensional space. A linear equation involving the xi’s defines a hyperplane in this same
space Rn, and the corresponding linear inequality defines a half-space, all points that are
either precisely on the hyperplane or lie on one particular side of it. Finally, the feasible region
of the linear program is specified by a set of inequalities and is therefore the intersection of
the corresponding half-spaces, a convex polyhedron.
But what do the concepts of vertex and neighbor mean in this general context?

7.6.1 Vertices and neighbors in n-dimensional space
Figure 7.12 recalls an earlier example. Looking at it closely, we see that each vertex is the
unique point at which some subset of hyperplanes meet. Vertex A, for instance, is the sole
point at which constraints 2©, 3©, and 7© are satisfied with equality. On the other hand, the

Depending on how Simplex is implemented, it may cycle at this
vertex.

We will see how in the next lecture.

Chandra & Ruta (UIUC) CS473 43 Fall 2016 43 / 43

Degeneracy and Cycling

More than d inequalities tight at a vertex.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 227

Figure 7.12 A polyhedron defined by seven inequalities.

x1

x3

x2

1©

4©

2©

3©

5©

6©

7©

A

B C

max x1 + 6x2 + 13x3

x1 ≤ 200 1©
x2 ≤ 300 2©

x1 + x2 + x3 ≤ 400 3©
x2 + 3x3 ≤ 600 4©

x1 ≥ 0 5©
x2 ≥ 0 6©
x3 ≥ 0 7©

7.6 The simplex algorithm
The extraordinary power and expressiveness of linear programs would be little consolation if
we did not have a way to solve them efficiently. This is the role of the simplex algorithm.
At a high level, the simplex algorithm takes a set of linear inequalities and a linear objec-

tive function and finds the optimal feasible point by the following strategy:

let v be any vertex of the feasible region

while there is a neighbor v′ of v with better objective value:

set v = v′

In our 2D and 3D examples (Figure 7.1 and Figure 7.2), this was simple to visualize and made
intuitive sense. But what if there are n variables, x1, . . . , xn?
Any setting of the xi’s can be represented by an n-tuple of real numbers and plotted in

n-dimensional space. A linear equation involving the xi’s defines a hyperplane in this same
space Rn, and the corresponding linear inequality defines a half-space, all points that are
either precisely on the hyperplane or lie on one particular side of it. Finally, the feasible region
of the linear program is specified by a set of inequalities and is therefore the intersection of
the corresponding half-spaces, a convex polyhedron.
But what do the concepts of vertex and neighbor mean in this general context?

7.6.1 Vertices and neighbors in n-dimensional space
Figure 7.12 recalls an earlier example. Looking at it closely, we see that each vertex is the
unique point at which some subset of hyperplanes meet. Vertex A, for instance, is the sole
point at which constraints 2©, 3©, and 7© are satisfied with equality. On the other hand, the

Depending on how Simplex is implemented, it may cycle at this
vertex.

We will see how in the next lecture.
Chandra & Ruta (UIUC) CS473 43 Fall 2016 43 / 43

	Introduction to Linear Programming
	Introduction
	Examples
	General Form
	Canonical Forms
	History

	Solving Linear Programs
	Algorithm for 2 Dimensions
	Simplex in 2 Dimensions
	Simplex

