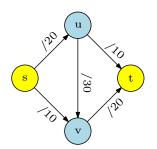
Network Flow Algorithms

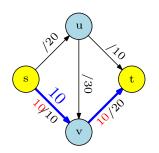
Lecture 14 October 12, 2016

Part 1

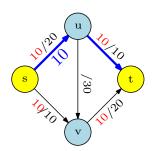
Algorithm(s) for Maximum Flow



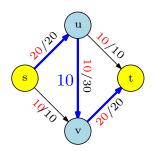
- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge $e \in P$.
- Augment flow along this path.
- Repeat augmentation for as long as possible.



- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge $e \in P$.
- Augment flow along this path.
- Repeat augmentation for as long as possible.

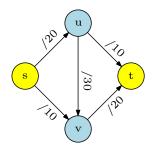


- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge $e \in P$.
- Augment flow along this path.
- Repeat augmentation for as long as possible.



- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge $e \in P$.
- Augment flow along this path.
- Repeat augmentation for as long as possible.

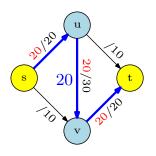
Issues = What is this nonsense?



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

4

Issues = What is this nonsense?

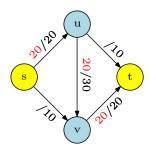


- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path

4

Repeat augmentation for as long as possible.

Issues = What is this nonsense?

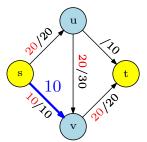


- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

4

Issues = What is this nonsense?



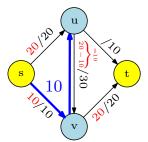
- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path

4

Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Issues = What is this nonsense?



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path

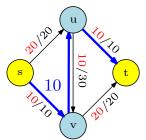
4

Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to "push-back" flow along edge (u, v).

Issues = What is this nonsense?



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path

4

Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to "push-back" flow along edge (u, v).

Residual Graph

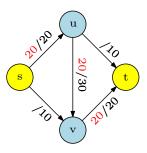
The "leftover" graph

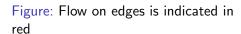
Definition

For a network G = (V, E) and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- **2 Forward Edges**: For each edge $e \in E$ with f(e) < c(e), we add $e \in E'$ with capacity c(e) f(e).
- **3 Backward Edges**: For each edge $e = (u, v) \in E$ with f(e) > 0, we add $(v, u) \in E'$ with capacity f(e).

Residual Graph Example





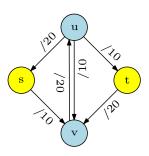


Figure: Residual Graph

Residual graph has...

Given a network with n vertices and m edges, and a valid flow f in it, the residual network G_f , has

- (A) m edges.
- (B) $\leq 2m$ edges.
- (C) $\leq 2m + n$ edges.
- (D) 4m + 2n edges.
- (E) nm edges.
- (F) just the right number of edges not too many, not too few.

Observation: Residual graph captures the "residual" problem exactly.

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

8

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with v(f') > v(f). Then there is a flow f'' of value v(f') - v(f) in G_f .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

8

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

```
\begin{array}{c} \mathsf{MaxFlow}(G,s,t)\colon\\ &\mathsf{if} \text{ the flow from } s \text{ to } t \text{ is } 0 \text{ then}\\ &\mathsf{return} \ 0\\ &\mathsf{Find any flow} \ f \text{ with } \mathsf{v}(f) > 0 \text{ in } G\\ &\mathsf{Recursively compute a maximum flow } f' \text{ in } G_f\\ &\mathsf{Output the flow } f + f' \end{array}
```

9

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

```
\begin{aligned} & \mathsf{MaxFlow}(G,s,t) \colon \\ & & \mathsf{if} \ \mathsf{the} \ \mathsf{flow} \ \mathsf{from} \ s \ \mathsf{to} \ t \ \mathsf{is} \ \mathsf{0} \ \mathsf{then} \\ & & & \mathsf{return} \ \mathsf{0} \end{aligned} \\ & & & \mathsf{Find} \ \mathsf{any} \ \mathsf{flow} \ f \ \mathsf{with} \ v(f) > 0 \ \mathsf{in} \ G \\ & & & \mathsf{Recursively} \ \mathsf{compute} \ \mathsf{a} \ \mathsf{maximum} \ \mathsf{flow} \ f' \ \mathsf{in} \ G_f \\ & & & \mathsf{Output} \ \mathsf{the} \ \mathsf{flow} \ f + f' \end{aligned}
```

Iterative algorithm for finding a maximum flow:

```
\mathsf{MaxFlow}(G,s,t):
    Start with flow f that is 0 on all edges while there is a flow f' in G_f with v(f')>0 do f=f+f' Update G_f
```

Ford-Fulkerson Algorithm

algFordFulkerson

```
for every edge e, f(e) = 0
G_f is residual graph of G with respect to f
while G_f has a simple s-t path do
let P be simple s-t path in G_f
f = \operatorname{augment}(f, P)
Construct new residual graph G_f.
```

Ford-Fulkerson Algorithm

```
algFordFulkerson

for every edge e, f(e) = 0

G_f is residual graph of G with respect to f

while G_f has a simple s-t path do

let P be simple s-t path in G_f

f = \operatorname{augment}(f, P)

Construct new residual graph G_f.
```

```
augment(f, P)

let b be bottleneck capacity,
 i.e., min capacity of edges in P (in G_f)

for each edge (u, v) in P do

if e = (u, v) is a forward edge then
 f(e) = f(e) + b

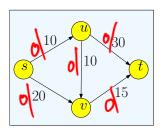
else (*(u, v)) is a backward edge *)

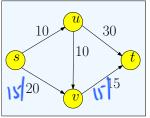
let e = (v, u) (*(v, u)) is in G *)

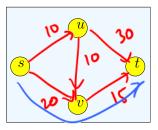
f(e) = f(e) - b

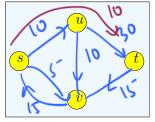
return f
```

Example

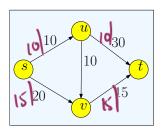


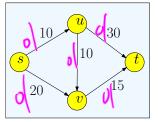


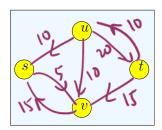


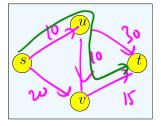


Example continued

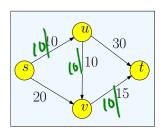


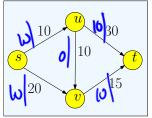


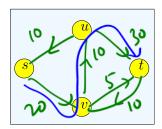


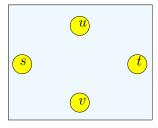


Example continued

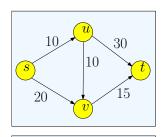


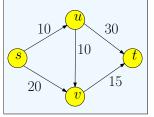


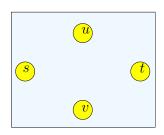


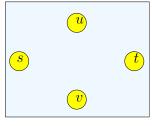


Example continued









Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

• Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) - f(e)$.

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

• Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) - b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

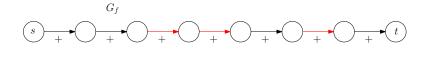
Proof.

Verify that f' is a flow. Let b be augmentation amount.

- Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.
- **2** Conservation constraint: Let v be an internal node. Let e_1, e_2 be edges of P incident to v. Four cases based on whether e_1, e_2 are forward or backward edges. Check cases (see fig next slide).

Properties of Augmentation

Conservation Constraint



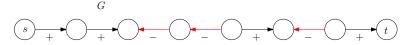


Figure: Augmenting path P in G_f and corresponding change of flow in G. Red edges are backward edges.

Properties of Augmentation

Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e., f(e), for all edges e) and the residual capacities in G_f are integers.

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds for j iterations. Then in (j+1)st iteration, minimum capacity edge b is an integer, and so flow after augmentation is an integer.

Progress in Ford-Fulkerson

Proposition

Let f be a flow and f' be flow after one augmentation. Then v(f) < v(f').

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph. We have the following.

- First edge e in P must leave s.
- Original network G has no incoming edges to s; hence e is a forward edge.
- P is simple and so never returns to s.
- Thus, value of flow increases by the flow on edge e.

Termination proof for integral flow

Theorem

Let **C** be the minimum cut value; in particular

 $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least ${\bf 1}$ after each augmentation. Maximum value of flow is at most ${\bf C}$.

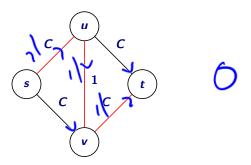
Running time

- **1** Number of iterations $\leq C$.
- ② Number of edges in $G_f \leq 2m$.
- **3** Time to find augmenting path is O(n + m).
- Running time is O(C(n+m)) (or O(mC)).

Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

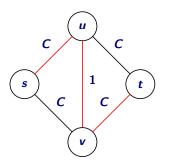
Ford-Fulkerson can take $\Omega(C)$ iterations.

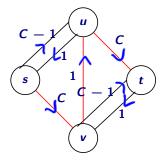
Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?



Ford-Fulkerson can take $\Omega(C)$ iterations.

Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?





Ford-Fulkerson can take $\Omega(C)$ iterations.

Correctness of Ford-Fulkerson

Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the maximum *s-t* flow?

Correctness of Ford-Fulkerson

Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the maximum *s-t* flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

Recalling Cuts

Definition

Given a flow network an **s-t cut** is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. Capacity of cut E' is $\sum_{e \in E'} c(e)$.

Let $A \subset V$ such that

- lacktriangledown $s \in A$, $t \not\in A$, and
- $B = V \setminus -A$ and hence $t \in B$.

Define
$$(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}$$

Claim

(A, B) is an s-t cut.

Recall: Every minimal s-t cut E' is a cut of the form (A, B).

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that v(f) = c(A, B)

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that v(f) = c(A, B)

Proof.

Let A be all vertices reachable from s in G_f ; $B = V \setminus A$.

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that v(f) = c(A, B)

Proof.

Let A be all vertices reachable from s in G_f ; $B = V \setminus A$.

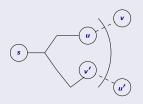
 \bullet $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G.

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that v(f) = c(A, B)

Proof.

Let A be all vertices reachable from s in G_f ; $B = V \setminus A$.



- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G.
- If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then f(e) = c(e) (saturated edge) because otherwise v is reachable from s in G_f .

Lemma Proof Continued

Proof.

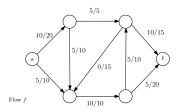
- 1 If $e = (u', v') \in G$ with $u' \in B$ and $v' \in A$, then f(e) = 0 because otherwise u' is reachable from s in G_f
- Thus,

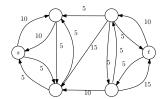
$$v(f) = f^{\text{out}}(A) - f^{\text{in}}(A)$$

= $f^{\text{out}}(A) - 0$
= $c(A, B) - 0$
= $c(A, B)$.

24

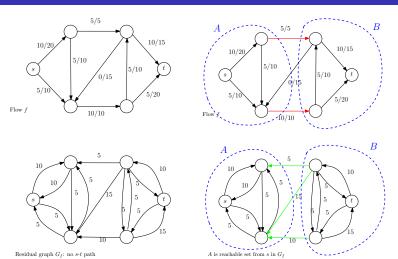
Example





Residual graph G_f : no s-t path

Example



Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \le c(A, B)$.
- ② For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-t cut (A^*, B^*) .
- **3** Hence, f^* is maximum.

Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network G, the value of a maximum s-t flow is equal to the capacity of the minimum s-t cut.

Proof.

Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.

Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network G with integer capacities, there is a maximum s-t flow that is integer valued.

Proof.

Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.

Does it terminate?

- (A) algFordFulkerson always terminates.
- (B) algFordFulkerson might not terminate if the input has real numbers.
- (C) algFordFulkerson might not terminate if the input has rational numbers.
- (D) algFordFulkerson might not terminate if the input is only integer numbers that are sufficiently large.

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut? Proof gives the algorithm!

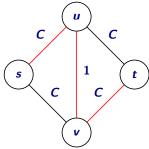
- Compute an s-t maximum flow f in G
- ② Obtain the residual graph G_f
- \odot Find the nodes A reachable from s in G_f
- Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

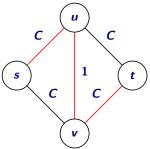
Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?

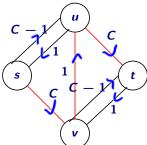
Running time = O(mC) is not polynomial. Can the upper bound be achieved?

Running time = O(mC) is not polynomial. Can the upper bound be achieved?



Running time = O(mC) is not polynomial. Can the upper bound be achieved?





Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way?

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- 2 Choose the shortest augmenting path.

Part II

Polynomial-time Augmenting Path Algorithms

Augmenting along high capacity paths

Definition

Given G = (V, E) with edge capacities and a path P, the bottlneck capacity of P is smallest capacity among edges of P.

Algorithm: In each iteration of Ford-Fulkerson choose an augmenting path with largest bottleneck capacity.

Question: How many iterations does the algorithm take?

Finding path with largest bottleneck capacity

 G_f - residual network with (residual) capacities.

n vertices and *m* edges.

Finding the s-t path with largest bottleneck capacity can be done (faster is better) in:

- (A) O(n+m)
- (B) $O(m + n \log n)$
- (C) O(nm)
- (D) $O(m^2)$
- (E) $O(m^3)$

time (expected or deterministic is fine here).

Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- When the second term of the s

Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- How do we find path with largest bottleneck capacity?
 - ◆ Assume we know △ the bottleneck capacity
 - 2 Remove all edges with residual capacity $\leq \Delta$

 - Do binary search to find largest
 - **3** Running time: $O(m \log C)$

Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- How do we find path with largest bottleneck capacity?
 - Assume we know the bottleneck capacity
 - 2 Remove all edges with residual capacity $\leq \Delta$

 - Obinary search to find largest
 - **3** Running time: $O(m \log C)$
 - Max bottleneck capacity is one of the edge capacities. Why?
 - Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
 - **3** Algorithm's running time is $O(m \log m)$.
 - **9** Alternative algorithm: modify Dijkstra to get $O(m + n \log n)$.

G = (V, E) flow network with integer capacities. F^* is max s-t-flow value.

Theorem

Algorithm terminates in $O(m \log F^*)$ iterations.

G = (V, E) flow network with integer capacities. F^* is max s-t-flow value.

Theorem

Algorithm terminates in $O(m \log F^*)$ iterations.

Suppose algorithm takes k iterations. Let α_i be flow value after i iterations. $\alpha_0 = 0$. In Ford-Fulkerson we have $\alpha_{i+1} \geq \alpha_i + 1$. For the new algorithm we have,

Lemma

If algorithm does not terminate after the *i*'th iteration, amount of flow augmented in (i + 1)st iteration is at least $\min\{1, (F^* - \alpha_i)/m\}$. Hence, $\alpha_{i+1} - \alpha_i \ge \min\{1, (F^* - \alpha_i)/m\}$.

Assume lemma. Let $\beta_i = F^* - \alpha_i$ be residual flow left after i iterations. We have $\beta_0 = F^*$.

$$\alpha_{i+1} - \alpha_i = \beta_i - \beta_{i+1} \times \beta_i / m$$

implies

$$\beta_{i+1} \leq (1-1/m)\beta_i$$

Therefore, for $k \geq 1$,

$$\beta_{k} \leq (1 - 1/m)^{k} \beta_{0} \leq (1 - 1/m)^{k} F^{*}$$

$$\left(1 - \frac{1}{m}\right)^{m} \lim_{k \to \infty} \beta_{k} \int_{\mathbb{R}^{+}}^{\mathbb{R}^{+}} \left(1 - \frac{1}{m}\right)^{m} \lim_{k \to \infty} \beta_{k} \int_{\mathbb{R}^{+}}^{\mathbb{R}^{+}} \left(1 - \frac{1}{m}\right)^{m} \int_{\mathbb$$

Assume lemma. Let $\beta_i = F^* - \alpha_i$ be residual flow left after *i* iterations. We have $\beta_0 = F^*$.

$$\alpha_{i+1} - \alpha_i = \beta_i - \beta_{i+1} \le \beta_i / m$$

implies

$$\beta_{i+1} \leq (1-1/m)\beta_i$$

Therefore, for k > 1,

$$\beta_k \leq (1 - 1/m)^k \beta_0 \leq (1 - 1/m)^k F^*$$

Thus, after $h = m \ln F^*$ iterations,

$$\beta_h \leq (1 - 1/m)^{m \ln F^*} F^* \leq \exp(-\ln F^*) F^* \leq 1.$$

This implies that algorithm terminates in $1 + m \ln F^*$ iterations.

And $F^* \leq mC$ and hence algorithm terminates in $O(m \log mC)$ iterations.

Proof of Lemma

- f_i flow in G after i iterations of value α_i . G_{f_i} is residual graph.
- In G_{f_i} there is a flow of value $F^* \alpha_i$.
- Do a flow decomposition in G_{f_i} on at most m paths.
- Implies that there is a flow of value $F^* \alpha_i$ in G_{f_i} that can be decomposed into at most m paths.
- ullet One of those paths, say P, carries at least $(F^*-lpha_i)/m$ flow
- Flow on max bottleneck path must be at least as large as that on P. This implies that the amount of augmentation that the algorithm does in iteration i+1 is at least $(F^* \alpha_i)/m$.
- Thus, $\alpha_{i+1} \geq \alpha_i + (F^* \alpha_i)/m$.

Running time analysis

- Each iteration requires finding a max bottleneck capacity path in residual graph. Can be found in $O(n \log n + m)$ or in $O(m \log C)$ time.
- Number of iterations is $O(m \log mC)$.
- Hence overall running time is $O(m^2 \log mC \log C)$ or $O(mn \log n \log mC + m^2 \log mC)$.

Strongly polynomial time algorithm

Many problems has inputs with two types of information:

- combinatorial
- numerical

Example:

Graph problems: vertices and edges are combinatorial part and edge/vertex lengths/capacities are numerical.

An algorithm for a problem is called *strongly polynomial* if its running time is a polynomial and it does not depend on the numerical part. Here, we assume that standard arithmetic operations on the input numbers takes constant time. Otherwise it is *weakly polynomial*. It is *pseudo-polynomial* if the run-time is polynomial assuming numerical data is in unary.

A strongly polynomial time algorithm for max flow

Algorithm: In each iteration of Ford-Fulkerson choose a shortest augmenting path in the residual graph.

```
algEdmondsKarp

for every edge e, f(e) = 0

G_f is residual graph of G with respect to f

while G_f has a simple s-t path do

Perform BFS in G_f

P: shortest s-t path in G_f

f = augment(f, P)

Construct new residual graph G_f.
```

A strongly polynomial time algorithm for max flow

Algorithm: In each iteration of Ford-Fulkerson choose a shortest augmenting path in the residual graph.

```
algEdmondsKarp

for every edge e, f(e) = 0

G_f is residual graph of G with respect to f

while G_f has a simple s-t path do

Perform BFS in G_f

P: shortest s-t path in G_f

f = augment(f, P)

Construct new residual graph G_f.
```

Theorem

Algorithm terminates in O(mn) iterations. Thus, overall running time is $O(m^2n)$.

Orlin's Algorithm

- Currently, fastest strongly polynomial time algorithm runs in O(mn) time.
- O(mn) time is also sufficient to do flow-decomposition

You can state and use the above results in a black box fashion when using maximum flow algorithms in reductions.